scholarly journals Antimicrobial Resistance among Enterococci from Pigs in Three European Countries

2002 ◽  
Vol 68 (8) ◽  
pp. 4127-4129 ◽  
Author(s):  
Frank Møller Aarestrup ◽  
Henrik Hasman ◽  
Lars Bogø Jensen ◽  
Miguel Moreno ◽  
Inmaculada A. Herrero ◽  
...  

ABSTRACT Enterococci from pigs in Denmark, Spain, and Sweden were examined for susceptibility to antimicrobial agents and copper and the presence of selected resistance genes. The greatest levels of resistance were found among isolates from Spain and Denmark compared to those from Sweden, which corresponds to the amounts of antimicrobial agents used in food animal production in those countries. Similar genes were found to encode resistance in the different countries, but the tet(L) and tet(S) genes were more frequently found among isolates from Spain. A recently identified transferable copper resistance gene was found in all copper-resistant isolates from the different countries.

1997 ◽  
Vol 2 (3) ◽  
pp. 17-19 ◽  
Author(s):  
H C Wegener ◽  
F Bager ◽  
F M Aarestrup

A general increase in antimicrobial resistance among pathogenic bacteria is causing concern worldwide that the widespread use of antimicrobial agents in animal production may promote the development of resistant bacteria or resistance genes that can be tr


2010 ◽  
Vol 7 (9) ◽  
pp. 1089-1097 ◽  
Author(s):  
Raghavendra G. Amachawadi ◽  
Nick W. Shelton ◽  
Megan E. Jacob ◽  
Xiaorong Shi ◽  
Sanjeev K. Narayanan ◽  
...  

2012 ◽  
Vol 78 (22) ◽  
pp. 8062-8066 ◽  
Author(s):  
Russell D. Hamilton ◽  
Holly J. Hulsebus ◽  
Samina Akbar ◽  
Jeffrey T. Gray

ABSTRACTSalmonellosis is one of the most common causes of food-borne disease in the United States. Increasing antimicrobial resistance and corresponding increases in virulence present serious challenges. Currently, empirical therapy for invasiveSalmonella entericainfection includes either ceftriaxone or ciprofloxacin (E. L. Hohmann, Clin. Infect. Dis. 32:263–269, 2001). TheblaCMY-2gene confers resistance to ceftriaxone, the antimicrobial of choice for pediatric patients with invasiveSalmonella entericainfections, making these infections especially dangerous (J. M. Whichard et al., Emerg. Infect. Dis. 11:1464–1466, 2005). We hypothesized thatblaCMY-2-positiveSalmonella entericawould exhibit increased MICs to multiple antimicrobial agents and increased resistance gene expression following exposure to ceftriaxone using a protocol that simulated a patient treatmentin vitro. SevenSalmonella entericastrains survived a simulated patient treatmentin vitroand, following treatment, exhibited a significantly increased ceftriaxone MIC. Not only would these isolates be less responsive to further ceftriaxone treatment, but because theblaCMY-2genes are commonly located on large, multidrug-resistant plasmids, increased expression of theblaCMY-2gene may be associated with increased expression of other drug resistance genes located on the plasmid (N. D. Hanson and C. C. Sanders, Curr. Pharm. Des. 5:881–894, 1999). The results of this study demonstrate that a simulated patient treatment with ceftriaxone can alter the expression of antimicrobial resistance genes, includingblaCMY-2andfloRinS. entericaserovar Typhimurium andS. entericaserovar Newport. Additionally, we have shown increased MICs following a simulated patient treatment with ceftriaxone for tetracycline, amikacin, ceftriaxone, and cefepime, all of which have resistance genes commonly located on CMY-2 plasmids. The increases in resistance observed are significant and may have a negative impact on both public health and antimicrobial resistance ofSalmonella enterica.


2019 ◽  
Vol 74 (10) ◽  
pp. 2876-2879 ◽  
Author(s):  
Yanhong Shang ◽  
Dexi Li ◽  
Wenbo Hao ◽  
Stefan Schwarz ◽  
Xinxin Shan ◽  
...  

Abstract Objectives To investigate the presence and transfer of the oxazolidinone/phenicol resistance gene optrA and identify the genetic elements involved in the horizontal transfer of the optrA gene in Streptococcus suis. Methods A total of 237 S. suis isolates were screened for the presence of the optrA gene by PCR. Whole-genome DNA of three optrA-positive strains was completely sequenced using the Illumina MiSeq and Pacbio RSII platforms. MICs were determined by broth microdilution. Transferability of the optrA gene in S. suis was investigated by conjugation. The presence of circular intermediates was examined by inverse PCR. Results The optrA gene was present in 11.8% (28/237) of the S. suis strains. In three strains, the optrA gene was flanked by two copies of IS1216 elements in the same orientation, located either on a prophage or on ICESa2603-family integrative and conjugative elements (ICEs), including one tandem ICE. In one isolate, the optrA-carrying ICE transferred with a frequency of 2.1 × 10−8. After the transfer, the transconjugant displayed elevated MICs of the respective antimicrobial agents. Inverse PCRs revealed that circular intermediates of different sizes were formed in the three optrA-carrying strains, containing one copy of the IS1216E element and the optrA gene alone or in combination with other resistance genes. Conclusions A prophage and two ICESa2603-family ICEs (including one tandem ICE) associated with the optrA gene were identified in S. suis. The association of the optrA gene with the IS1216E elements and its location on either a prophage or ICEs will aid its horizontal transfer.


2021 ◽  
Vol 11 ◽  
Author(s):  
Feng Zhang ◽  
Shi Wu ◽  
Jiahui Huang ◽  
Runshi Yang ◽  
Jumei Zhang ◽  
...  

Antimicrobial resistance has become a major public health threat. Food-related Staphylococcus species have received much attention due to their multidrug resistance. The cfr gene associated with multidrug resistance has been consistently detected in food-derived Staphylococcus species. In this retrospective study, we examined the prevalence of cfr-positive Staphylococcus strains isolated from poultry meat in different geographical areas of China from 2011 to 2016. Two cfr-positive Staphylococcus delphini strains were identified from poultry meat in China. Comparative and whole-genome analyses were performed to characterize the genetic features and overall antimicrobial resistance genes in the two S. delphini isolates 245-1 and 2794-1. Whole-genome sequencing showed that they both harbored a novel 20,258-bp cfr-carrying Tn558 transposon derivative on their chromosomes. The Tn558 derivative harbors multiple antimicrobial resistance genes, including the transferable multiresistance gene cfr, chloramphenicol resistance gene fexA, aminoglycoside resistance genes aacA-aphD and aadD, and bleomycin resistance gene ble. Surprisingly, within the Tn558 derivative, an active unconventional circularizable structure containing various resistance genes and a copy of a direct repeat sequence was identified by two-step PCR. Furthermore, core genome phylogenetic analysis revealed that the cfr-positive S. delphini strains were most closely related to S. delphini 14S03313-1 isolated from Japan in 2017 and 14S03319-1 isolated from Switzerland in 2017. This study is the first report of S. delphini harboring a novel cfr-carrying Tn558 derivative isolated from retail food. This finding raises further concerns regarding the potential threat to food safety and public health safety. The occurrence and dissemination of similar cfr-carrying transposons from diverse Staphylococcus species need further surveillance.


2019 ◽  
Author(s):  
Aislinn D. Rowan-Nash ◽  
Rafael Araos ◽  
Erika M.C. D’Agata ◽  
Peter Belenky

ABSTRACTBackgroundThe issue of antimicrobial resistance continues to grow worldwide, and long-term care facilities are significant reservoirs of antimicrobial-resistant organisms, in part due to high frequency of antimicrobial use. Patients with advanced dementia are particularly vulnerable to multidrug-resistant organism acquisition and antimicrobial overuse, which has negative consequences for the gut microbiome and can contribute to the selection and propagation of antimicrobial resistance genes. In this study, we longitudinally examined a group of advanced dementia patients treated with the fluoroquinolone antimicrobial levofloxacin, finding a correlation between abundance of pathogens and antimicrobial resistance genes, which we confirmed in a larger cohort of subjects with advanced dementia.ResultsWe observed significant inter- and intra-subject heterogeneity in the composition of the microbiota of the longitudinal levofloxacin cohort, suggesting temporal instability. Within this dataset, we did not find significant impacts of levofloxacin on the diversity, composition, function, or resistome of the gut microbiota of this population. However, we were able to link the antimicrobial resistance gene burden in a sample with the relative abundance of several pathobionts – particularly Escherichia coli, Proteus mirabilis, and Enterococcus faecalis, as well as less-prevalent species including Providencia stuartii and Staphylococcus haemolyticus. Furthermore, we used metagenomic assembly and binning to demonstrate that these species had higher genomic resistance gene levels than common gut commensals, and we were able to predict antimicrobial resistance gene burden from the relative abundances of these species in a separate, larger cohort from the same population.ConclusionsWe found that the relative abundances of several pathobionts were correlated with and were even predictive of the level of antimicrobial resistance genes in corresponding samples, and that these species carried high levels of resistances genes in their assembled genomes. In order to test this observation, we utilized a larger metagenomics dataset from a similar population and confirmed the association between pathobiont abundance and antimicrobial resistance genes. Given the high frequency with which these species were found at high levels in this population and the underlying vulnerability to infection with multidrug resistant organisms of advanced dementia patients, attention to microbial blooms of these species may be warranted. Additionally, in this study, we were able to utilize genomic assembly from metagenomic data to more definitively associate antimicrobial resistance gene levels with specific assembled species; as this technology continues to develop, assembly could prove to be a valuable method to monitor both specific resistance genes and blooms of multidrug-resistant organisms.


2019 ◽  
Vol 8 (35) ◽  
Author(s):  
Nesreen H. Aljahdali ◽  
Pravin R. Kaldhone ◽  
Steven L. Foley ◽  
Bijay K. Khajanchi

We sequenced 35 Salmonella enterica isolates carrying incompatibility group I1 (IncI1) plasmids from different serotypes to study their genotypic characteristics. The isolates originated from food animals (n = 32) and human patients (n = 3). All isolates carried IncI1 plasmids, and many had additional plasmids detected along with virulence and antimicrobial resistance genes.


Sign in / Sign up

Export Citation Format

Share Document