scholarly journals Localization and Functional Analysis of PepI, the Immunity Peptide of Pep5-Producing Staphylococcus epidermidis Strain 5

2004 ◽  
Vol 70 (6) ◽  
pp. 3263-3271 ◽  
Author(s):  
Anja Hoffmann ◽  
Tanja Schneider ◽  
Ulrike Pag ◽  
Hans-Georg Sahl

ABSTRACT Pep5 is a cationic pore-forming lantibiotic produced by Staphylococcus epidermidis strain 5. The producer strain protects itself from the lethal action of its own bacteriocin through the 69-amino-acid immunity peptide PepI. The N-terminal segment of PepI contains a 20-amino-acid stretch of apolar residues, whereas the C terminus is very hydrophilic, with a net positive charge. We used green fluorescent protein (GFP)-PepI fusions to obtain information on its localization in vivo. PepI was found to occur outside the cytoplasm and to accumulate at the membrane-cell wall interface. The extracellular localization appeared essential for conferring immunity. We analyzed the functional role of the specific segments by constructing various mutant peptides, which were also fused to GFP. When the hydrophobic N-terminal segment of PepI was disrupted by introducing charged amino acids, the export of PepI was blocked and clones expressing such mutant peptides were Pep5 sensitive. When PepI was successively shortened at the C terminus, in contrast, its export properties remained unchanged whereas its ability to confer immunity was gradually reduced. The results show that the N-terminal part is required for the transport of PepI and that the C-terminal part is important for conferring the immunity phenotype. A concept based on target shielding is proposed for the PepI immunity mechanism.

2004 ◽  
Vol 279 (19) ◽  
pp. 20028-20034 ◽  
Author(s):  
Michael J. Hendzel ◽  
Melody A. Lever ◽  
Ellen Crawford ◽  
John P. H. Th'ng

We have used a combination of kinetic measurements and targeted mutations to show that the C-terminal domain is required for high-affinity binding of histone H1 to chromatin, and phosphorylations can disrupt binding by affecting the secondary structure of the C terminus. By measuring the fluorescence recovery after photo-bleaching profiles of green fluorescent protein-histone H1 proteins in living cells, we find that the deletion of the N terminus only modestly reduces binding affinity. Deletion of the C terminus, however, almost completely eliminates histone H1.1 binding. Specific mutations of the C-terminal domain identified Thr-152 and Ser-183 as novel regulatory switches that control the binding of histone H1.1in vivo. It is remarkable that the single amino acid substitution of Thr-152 with glutamic acid was almost as effective as the truncation of the C terminus to amino acid 151 in destabilizing histone H1.1 bindingin vivo. We found that modifications to the C terminus can affect histone H1 binding dramatically but have little or no influence on the charge distribution or the overall net charge of this domain. A comparison of individual point mutations and deletion mutants, when reviewed collectively, cannot be reconciled with simple charge-dependent mechanisms of C-terminal domain function of linker histones.


1998 ◽  
Vol 336 (2) ◽  
pp. 367-371 ◽  
Author(s):  
Leen AMERY ◽  
Chantal BREES ◽  
Myriam BAES ◽  
Chiaki SETOYAMA ◽  
Retsu MIURA ◽  
...  

The functionality of the C-terminus (Ser-Asn-Leu; SNL) of human d-aspartate oxidase, an enzyme proposed to have a role in the inactivation of synaptically released d-aspartate, as a peroxisome-targeting signal (PTS1) was investigated in vivoand in vitro. Bacterially expressed human d-aspartate oxidase was shown to interact with the human PTS1-binding protein, peroxin protein 5 (PEX5p). Binding was gradually abolished by carboxypeptidase treatment of the oxidase and competitively inhibited by a Ser-Lys-Leu (SKL)-containing peptide. After transfection of mouse fibroblasts with a plasmid encoding green fluorescent protein (GFP) extended by PKSNL (the C-terminal pentapeptide of the oxidase), a punctate fluorescent pattern was evident. The modified GFP co-localized with peroxisomal thiolase as shown by indirect immunofluorescence. On transfection in fibroblasts lacking PEX5p receptor, GFP–PKSNL staining was cytosolic. Peroxisomal import of GFP extended by PGSNL (replacement of the positively charged fourth-last amino acid by glycine) seemed to be slower than that of GFP–PKSNL, whereas extension by PKSNG abolished the import of the modified GFP. Taken together, these results indicate that SNL, a tripeptide not fitting the PTS1 consensus currently defined in mammalian systems, acts as a functional PTS1 in mammalian systems, and that the consensus sequence, based on this work and that of other groups, has to be broadened to (S/A/C/K/N)-(K/R/H/Q/N/S)-L.


2002 ◽  
Vol 363 (3) ◽  
pp. 737-744 ◽  
Author(s):  
Sandra PAIVA ◽  
Arthur L. KRUCKEBERG ◽  
Margarida CASAL

Green fluorescent protein (GFP) from Aequorea victoria was used as an in vivo reporter protein when fused to the C-terminus of the Jen1 lactate permease of Saccharomyces cerevisiae. The Jen1 protein tagged with GFP is a functional lactate transporter with a cellular abundance of 1670 molecules/cell, and a catalytic-centre activity of 123s−1. It is expressed and tagged to the plasma membrane under induction conditions. The factors involved in proper localization and turnover of Jen1p were revealed by expression of the Jen1p—GFP fusion protein in a set of strains bearing mutations in specific steps of the secretory and endocytic pathways. The chimaeric protein Jen1p—GFP is targeted to the plasma membrane via a Sec6-dependent process; upon treatment with glucose, it is endocytosed via END3 and targeted for degradation in the vacuole. Experiments performed in a Δdoa4 mutant strain showed that ubiquitination is associated with the turnover of the permease.


2010 ◽  
Vol 192 (18) ◽  
pp. 4790-4793 ◽  
Author(s):  
Colin P. Corcoran ◽  
Andrew D. S. Cameron ◽  
Charles J. Dorman

ABSTRACT The bacterial nucleoid-associated protein H-NS, which preferentially targets and silences A+T-rich genes, binds the ubiquitous reporter gene gfp and dramatically reduces local transcription. We have redesigned gfp to reduce H-NS-mediated transcription silencing and simultaneously improve translation in vivo without altering the amino acid sequence of the GFP protein.


2002 ◽  
Vol 76 (20) ◽  
pp. 10485-10496 ◽  
Author(s):  
Frédérique Weber-Lotfi ◽  
André Dietrich ◽  
Marcello Russo ◽  
Luisa Rubino

ABSTRACT Replication of the Carnation Italian ringspot virus genomic RNA in plant cells occurs in multivesicular bodies which develop from the mitochondrial outer membrane during infection. ORF1 in the viral genome encodes a 36-kDa protein, while ORF2 codes for the 95-kDa replicase by readthrough of the ORF1 stop codon. We have shown previously that the N-terminal part of ORF1 contains the information leading to vesiculation of mitochondria and that the 36-kDa protein localizes to mitochondria. Using infection, in vivo expression of green fluorescent protein fusions in plant and yeast cells, and in vitro mitochondrial integration assays, we demonstrate here that both the 36-kDa protein and the complete replicase are targeted to mitochondria and anchor to the outer membrane with the N terminus and C terminus on the cytosolic side. Analysis of deletion mutants indicated that the anchor sequence is likely to correspond approximately to amino acids 84 to 196, containing two transmembrane domains. No evidence for a matrix-targeting presequence was found, and the data suggest that membrane insertion of the viral proteins is mediated by an import receptor-independent signal-anchor mechanism relying on the two transmembrane segments and multiple recognition signals present in the N-terminal part of ORF1.


2007 ◽  
Vol 81 (8) ◽  
pp. 4323-4330 ◽  
Author(s):  
Nandini Sen ◽  
Adrish Sen ◽  
Erich R. Mackow

ABSTRACT Pathogenic hantaviruses cause two human diseases: hantavirus pulmonary syndrome (HPS) and hemorrhagic fever with renal syndrome (HFRS). The hantavirus G1 protein contains a long, 142-amino-acid cytoplasmic tail, which in NY-1 virus (NY-1V) is ubiquitinated and proteasomally degraded (E. Geimonen, I. Fernandez, I. N. Gavrilovskaya, and E. R. Mackow, J. Virol. 77: 10760-10768, 2003). Here we report that the G1 cytoplasmic tails of pathogenic Andes (HPS) and Hantaan (HFRS) viruses are also degraded by the proteasome and that, in contrast, the G1 tail of nonpathogenic Prospect Hill virus (PHV) is stable and not proteasomally degraded. We determined that the signals which direct NY-1V G1 tail degradation are present in a hydrophobic region within the C-terminal 30 residues of the protein. In contrast to that of PHV, the NY-1V hydrophobic domain directs the proteasomal degradation of green fluorescent protein and constitutes an autonomous degradation signal, or “degron,” within the NY-1V G1 tail. Replacing 4 noncontiguous residues of the NY-1V G1 tail with residues present in the stable PHV G1 tail resulted in a NY-1V G1 tail that was not degraded by the proteasome. In contrast, changing a different but overlapping set of 4 PHV residues to corresponding NY-1V residues directed proteasomal degradation of the PHV G1 tail. The G1 tails of pathogenic, but not nonpathogenic, hantaviruses contain intervening hydrophilic residues within the C-terminal hydrophobic domain, and amino acid substitutions that alter the stability or degradation of NY-1V or PHV G1 tails result from removing or adding intervening hydrophilic residues. Our results identify residues that selectively direct the proteasomal degradation of pathogenic hantavirus G1 tails. Although a role for the proteasomal degradation of the G1 tail in HPS or HFRS is unclear, these findings link G1 tail degradation to viral pathogenesis and suggest that degrons within hantavirus G1 tails are potential virulence determinants.


Author(s):  
Marcela Soledad Bertolio ◽  
Anabela La Colla ◽  
Alejandra Carrea ◽  
Ana Romo ◽  
Gabriela Canziani ◽  
...  

We describe, for the first time, a new splice variant of the human TGF-β type II receptor (TβRII). The new transcript lacks 149 nucleotides, resulting in a frameshift and the emergence of an early stop codon, rendering a truncated mature protein of 57 amino acids. The predicted protein, lacking the transmembrane domain and with a distinctive 13-amino-acid stretch at its C-terminus, was named TβRII-Soluble Endogenous (TβRII-SE). Binding predictions indicate that the novel 13-amino-acid stretch interacts with all three TGF-β cognate ligands and generates a more extensive protein–protein interface than TβRII. TβRII-SE and human IgG1 Fc domain were fused in frame in a lentiviral vector (Lv) for further characterization. With this vector, we transduced 293T cells and purified TβRII-SE/Fc by A/G protein chromatography from conditioned medium. Immunoblotting revealed homogeneous bands of approximately 37 kDa (reduced) and 75 kDa (non-reduced), indicating that TβRII-SE/Fc is secreted as a disulfide-linked homodimer. Moreover, high-affinity binding of TβRII-SE to the three TGF-β isoforms was confirmed by surface plasmon resonance (SPR) analysis. Also, intrahepatic delivery of Lv.TβRII-SE/Fc in a carbon tetrachloride-induced liver fibrosis model revealed amelioration of liver injury and fibrosis. Our results indicate that TβRII-SE is a novel member of the TGF-β signaling pathway with distinctive characteristics. This novel protein offers an alternative for the prevention and treatment of pathologies caused by the overproduction of TGF-β ligands.


2002 ◽  
Vol 13 (8) ◽  
pp. 2571-2584 ◽  
Author(s):  
Anjan G. Thakurta ◽  
William A. Whalen ◽  
Jin Ho Yoon ◽  
Anekella Bharathi ◽  
Libor Kozak ◽  
...  

The export of mRNA from the nucleus to the cytoplasm involves interactions of proteins with mRNA and the nuclear pore complex. We isolated Crp79p, a novel mRNA export factor from the same synthetic lethal screen that led to the identification of spMex67p inSchizosaccharomyces pombe. Crp79p is a 710-amino-acid-long protein that contains three RNA recognition motif domains in tandem and a distinct C-terminus. Fused to green fluorescent protein (GFP), Crp79p localizes to the cytoplasm. Like Mex67p, Crp79-GFP binds poly(A)+ RNA in vivo, shuttles between the nucleus and the cytoplasm, and contains a nuclear export activity at the C-terminus that is Crm1p-independent. All of these properties are essential for Crp79p to promote mRNA export. Crp79p import into the nucleus depends on the Ran system. A domain of spMex67p previously identified as having a nuclear export activity can functionally substitute for the nuclear export activity at the C-terminus of Crp79p. Although both Crp79p and spMex67p function to export mRNA, Crp79p does not substitute for all of spMex67p functions and probably is not a functional homologue of spMex67p. We propose that Crp79p is a nonessential mRNA export carrier in S. pombe.


2005 ◽  
Vol 73 (1) ◽  
pp. 573-582 ◽  
Author(s):  
Shira D. P. Rabin ◽  
Alan R. Hauser

ABSTRACT ExoU, a potent patatin-like phospholipase, causes rapid cell death following its injection into host cells by the Pseudomonas aeruginosa type III secretion system. To better define regions of ExoU required for cytotoxicity, transposon-based linker insertion mutagenesis followed by site-directed mutagenesis of individual residues was employed by using a Saccharomyces cerevisiae model system. Random insertion of five amino acids identified multiple regions within ExoU that are required for cell killing. Five regions were chosen for further characterization: three corresponded to the oxyanion hole, hydrolase motif, and catalytic aspartate motif of the patatin-like domain within the N-terminal half of ExoU; one corresponded to an uncharacterized part of the patatin-like domain; and one corresponded to a region near the C terminus. Specific individual amino acid substitutions in each of the four N-terminal regions prevented killing of yeast and significantly reduced phospholipase activity. Whereas five amino acid insertions in the fifth region near the C terminus markedly reduced cytotoxicity and phospholipase activity, substitution of individual amino acids did not abolish either activity. To determine whether each of the five identified regions of ExoU was also essential for cytotoxicity in human cells, representative mutant forms of ExoU fused to green fluorescent protein were expressed in HeLa cells. These variants of ExoU were readily visualized and caused minimal cytotoxicity to HeLa cells, while wild-type ExoU fused to green fluorescent protein induced significant cell lysis and no detectable fluorescence. Thus, a minimum of five regions, including one which is well removed from the patatin-like domain, are required for the cytotoxicity and phospholipase activity of ExoU.


2008 ◽  
Vol 190 (20) ◽  
pp. 6686-6696 ◽  
Author(s):  
Yong Chang ◽  
Gary E. Wesenberg ◽  
Craig A. Bingman ◽  
Brian G. Fox

ABSTRACT DesA3 (Rv3229c) from Mycobacterium tuberculosis is a membrane-bound stearoyl coenzyme A Δ9 desaturase that reacts with the oxidoreductase Rv3230c to produce oleic acid. This work provides evidence for a mechanism used by mycobacteria to regulate this essential enzyme activity. DesA3 expressed as a fusion with either a C-terminal His6 or c-myc tag had consistently higher activity and stability than native DesA3 having the native C-terminal sequence of LAA, which apparently serves as a binding determinant for a mycobacterial protease/degradation system directed at DesA3. Fusion of only the last 12 residues of native DesA3 to the C terminus of green fluorescent protein (GFP) was sufficient to make GFP unstable. Furthermore, the comparable C-terminal sequence from the Mycobacterium smegmatis DesA3 homolog Msmeg_1886 also conferred instability to the GFP fusion. Systematic examination revealed that residues with charged side chains, large nonpolar side chains, or no side chain at the last two positions were most important for stabilizing the construct, while lesser effects were observed at the third-from-last position. Using these rules, a combinational substitution of the last three residues of DesA3 showed that either DKD or LEA gave the best enhancement of stability for the modified GFP in M. smegmatis. Moreover, upon mutagenesis of LAA at the C terminus in native DesA3 to either of these tripeptides, the modified enzyme had enhanced catalytic activity and stability. Since many proteases are conserved within bacterial families, it is reasonable that M. tuberculosis will use a similar C-terminal degradation system to posttranslationally regulate the activity of DesA3 and other proteins. Application of these rules to the M. tuberculosis genome revealed that ∼10% the proteins encoded by essential genes may be susceptible to C-terminal proteolysis. Among these, an annotation is known for less than half, underscoring a general lack of understanding of proteins that have only temporal existence in a cell.


Sign in / Sign up

Export Citation Format

Share Document