scholarly journals Cocaine Causes Increased Type I Interferon Secretion by both L929 Cells and Murine Macrophages

2000 ◽  
Vol 7 (2) ◽  
pp. 245-250 ◽  
Author(s):  
K. Grattendick ◽  
D. B. Jansen ◽  
D. L. Lefkowitz ◽  
S. S. Lefkowitz

ABSTRACT Cocaine has been demonstrated to have a number of different effects on immune cell functions. We have reported alterations of cellular functions by macrophages (Mφ) exposed to cocaine in vitro, including the inhibition of mouse hepatitis virus replication. Here, we present evidence that cocaine stimulates the secretion of an antiviral product that is neutralized by anti-interferon (anti-IFN). A dose-dependent increase in the secretion of IFN by both Mφ and L929 cells incubated with cocaine, with a concomitant decrease in virus replication, is also reported. The increase in IFN secretion was most pronounced when cells were cultured in the presence of the IFN inducer poly(I·C). The effect of cocaine on IFN production was found to be primarily at the transcript level in both Mφ and L929 cells. These findings further support our previous research demonstrating an antiviral activity of cocaine in vitro. The relevance of this activity to viral infections in general remains to be determined.

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii63-ii63
Author(s):  
Lakshmi Bollu ◽  
Derek Wainwright ◽  
Lijie Zhai ◽  
Erik Ladomersky ◽  
Kristen Lauing ◽  
...  

Abstract INTRODUCTION Indoleamine 2,3-dioxygenase 1 (IDO; IDO1) is a rate-limiting enzyme that metabolizes the essential amino acid tryptophan into kynurenine. Recent work by our group has revealed that IDO promotes tumor development and suppresses immune cell functions independent of its enzyme activity. Moreover, pharmacologic IDO enzyme inhibitors that currently serve as the only class of drugs available for targeting immunosuppressive IDO activity, fail to improve the survival of patients with GBM. Here, we developed IDO-Proteolysis Targeting Chimeras (IDO-PROTACs). PROTACs bind to a specific protein and recruit an E3 ubiquitin ligase that enhance proteasome-mediated degradation of the target protein. METHODS A library of ≥100 IDO-PROTACs were developed by joining BMS986205 (IDO binder) with a linker group to various E3-ligase ligands. Western blot analysis of PROTAC-induced IDO degradation was tested in vitro among multiple human and mouse GBM cell lines including U87, GBM6, GBM43 and GL261 along a time course ranging between 1–96 hours of treatment and at varying concentrations. The mechanism of IDO protein degradation was investigated using pharmacologic ligands that inhibit or compete with the proteasome-mediated protein degradation pathway. RESULTS Primary screening identified several IDO-PROTACs with IDO protein degradation potential. Secondary screening showed that our lead compound has a DC50 value of ~0.5µM with an ability to degrade IDO in all GBM cells analyzed, and an initial activity within 12 hours of treatment that extended for up to 96 hours. Mutating the CRBN-binding ligand, pretreatment with the ubiquitin proteasome system inhibitors MG132 or MLN4924 or using unmodified parental compound all inhibited IDO protein degradation. CONCLUSIONS This study developed an initial IDO-PROTAC technology that upon further optimization, can neutralize both IDO enzyme and non-enzyme immunosuppressive effects. When combined with other forms of immunotherapy, IDO-PROTACs have the potential to substantially enhance immunotherapeutic efficacy in patients with GBM.


2001 ◽  
Vol 75 (6) ◽  
pp. 2803-2809 ◽  
Author(s):  
Andreas F. Kolb ◽  
Lecia Pewe ◽  
John Webster ◽  
Stanley Perlman ◽  
C. Bruce A. Whitelaw ◽  
...  

ABSTRACT Neutralizing antibodies represent a major host defense mechanism against viral infections. In mammals, passive immunity is provided by neutralizing antibodies passed to the offspring via the placenta or the milk as immunoglobulin G and secreted immunoglobulin A. With the long-term goal of producing virus-resistant livestock, we have generated mice carrying transgenes that encode the light and heavy chains of an antibody that is able to neutralize the neurotropic JHM strain of murine hepatitis virus (MHV-JHM). MHV-JHM causes acute encephalitis and acute and chronic demyelination in susceptible strains of mice and rats. Transgene expression was targeted to the lactating mammary gland by using the ovine β-lactoglobulin promoter. Milk from these transgenic mice contained up to 0.7 mg of recombinant antibody/ml. In vitro analysis of milk derived from different transgenic lines revealed a linear correlation between antibody expression and virus-neutralizing activity, indicating that the recombinant antibody is the major determinant of MHV-JHM neutralization in murine milk. Offspring of transgenic and control mice were challenged with a lethal dose of MHV-JHM. Litters suckling nontransgenic dams succumbed to fatal encephalitis, whereas litters suckling transgenic dams were fully protected against challenge, irrespective of whether they were transgenic. This demonstrates that a single neutralizing antibody expressed in the milk of transgenic mice is sufficient to completely protect suckling offspring against MHV-JHM-induced encephalitis.


1991 ◽  
Vol 87 (1) ◽  
pp. 246
Author(s):  
R PARHAR ◽  
P ERNST ◽  
F ALMOHANNA ◽  
A KWAASI ◽  
K SHETH ◽  
...  
Keyword(s):  

2008 ◽  
Vol 205 (8) ◽  
pp. 1929-1938 ◽  
Author(s):  
César Muñoz-Fontela ◽  
Salvador Macip ◽  
Luis Martínez-Sobrido ◽  
Lauren Brown ◽  
Joseph Ashour ◽  
...  

Tumor suppressor p53 is activated by several stimuli, including DNA damage and oncogenic stress. Previous studies (Takaoka, A., S. Hayakawa, H. Yanai, D. Stoiber, H. Negishi, H. Kikuchi, S. Sasaki, K. Imai, T. Shibue, K. Honda, and T. Taniguchi. 2003. Nature. 424:516–523) have shown that p53 is also induced in response to viral infections as a downstream transcriptional target of type I interferon (IFN) signaling. Moreover, many viruses, including SV40, human papillomavirus, Kaposi's sarcoma herpesvirus, adenoviruses, and even RNA viruses such as polioviruses, have evolved mechanisms designated to abrogate p53 responses. We describe a novel p53 function in the activation of the IFN pathway. We observed that infected mouse and human cells with functional p53 exhibited markedly decreased viral replication early after infection. This early inhibition of viral replication was mediated both in vitro and in vivo by a p53-dependent enhancement of IFN signaling, specifically the induction of genes containing IFN-stimulated response elements. Of note, p53 also contributed to an increase in IFN release from infected cells. We established that this p53-dependent enhancement of IFN signaling is dependent to a great extent on the ability of p53 to activate the transcription of IFN regulatory factor 9, a central component of the IFN-stimulated gene factor 3 complex. Our results demonstrate that p53 contributes to innate immunity by enhancing IFN-dependent antiviral activity independent of its functions as a proapoptotic and tumor suppressor gene.


2010 ◽  
Vol 10 ◽  
pp. 818-831 ◽  
Author(s):  
Hiroyuki Seki ◽  
Takaharu Sasaki ◽  
Tomomi Ueda ◽  
Makoto Arita

Inflammation is the first response of the immune system to infection or injury, but excessive or inappropriate inflammatory responses contribute to a range of acute and chronic human diseases. Clinical assessment of dietary supplementation of ω-3 polyunsaturated fatty acids (i.e., eicosapentaenoic acid [EPA] and docosahexaenoic acid [DHA]) indicate that they have beneficial impact on these diseases, although the mechanisms are poorly understood at the molecular level. In this decade, it has been revealed that EPA and DHA are enzymatically converted to bioactive metabolites in the course of acute inflammation and resolution. These metabolites were shown to regulate immune cell functions and to display potent anti-inflammatory actions bothin vitroandin vivo. Because of their ability to resolve an acute inflammatory response, they are referred to as proresolving mediators, or resolvins. In this review, we provide an overview of the formation and actions of these lipid mediators.


2018 ◽  
Vol 115 (20) ◽  
pp. 5253-5258 ◽  
Author(s):  
Hideyuki Yanai ◽  
Shiho Chiba ◽  
Sho Hangai ◽  
Kohei Kometani ◽  
Asuka Inoue ◽  
...  

IFN regulatory factor 3 (IRF3) is a transcription regulator of cellular responses in many cell types that is known to be essential for innate immunity. To confirm IRF3’s broad role in immunity and to more fully discern its role in various cellular subsets, we engineered Irf3-floxed mice to allow for the cell type-specific ablation of Irf3. Analysis of these mice confirmed the general requirement of IRF3 for the evocation of type I IFN responses in vitro and in vivo. Furthermore, immune cell ontogeny and frequencies of immune cell types were unaffected when Irf3 was selectively inactivated in either T cells or B cells in the mice. Interestingly, in a model of lipopolysaccharide-induced septic shock, selective Irf3 deficiency in myeloid cells led to reduced levels of type I IFN in the sera and increased survival of these mice, indicating the myeloid-specific, pathogenic role of the Toll-like receptor 4–IRF3 type I IFN axis in this model of sepsis. Thus, Irf3-floxed mice can serve as useful tool for further exploring the cell type-specific functions of this transcription factor.


1970 ◽  
Vol 131 (4) ◽  
pp. 843-850 ◽  
Author(s):  
Ilan Shif ◽  
Frederik B. Bang

Peritoneal macrophages from genetically resistant C3H mice and genetically susceptible Princeton (PRI) mice adsorbed the MHV (PRI) strain of mouse hepatitis virus equally well. The difference between the permissive cells and the nonpermissive ones seems to reside in the ability of the former to "eclipse" the virus and, subsequently, support virus replication. C3H cells exposed to low multiplicities of the virus remained intact with no demonstrable viral replication. Virus, taken up by the resistant cells, was protected from heat and underwent slow inactivation while few or no virus particles were released into the medium.


Viruses ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 576 ◽  
Author(s):  
Tomomi Takano ◽  
Kumi Satoh ◽  
Tomoyoshi Doki ◽  
Taishi Tanabe ◽  
Tsutomu Hohdatsu

Feline infectious peritonitis (FIP) is a viral disease with a high morbidity and mortality by the FIP virus (FIPV, virulent feline coronavirus). Several antiviral drugs for FIP have been identified, but many of these are expensive and not available in veterinary medicine. Hydroxychloroquine (HCQ) is a drug approved by several countries to treat malaria and immune-mediated diseases in humans, and its antiviral effects on other viral infections (e.g., SARS-CoV-2, dengue virus) have been confirmed. We investigated whether HCQ in association with interferon-ω (IFN-ω) is effective for FIPV in vitro. A total of 100 μM of HCQ significantly inhibited the replication of types I and II FIPV. Interestingly, the combination of 100 μM of HCQ and 104 U/mL of recombinant feline IFN-ω (rfIFN-ω, veterinary registered drug) increased its antiviral activity against type I FIPV infection. Our study suggested that HCQ and rfIFN-ω are applicable for treatment of FIP. Further clinical studies are needed to verify the combination of HCQ and rIFN-ω will be effective and safe treatment for cats with FIP.


2020 ◽  
Vol 21 (23) ◽  
pp. 8929
Author(s):  
Melanie Kienzl ◽  
Julia Kargl ◽  
Rudolf Schicho

Leukocytes are part of the tumor microenvironment (TME) and are critical determinants of tumor progression. Because of the immunoregulatory properties of cannabinoids, the endocannabinoid system (ECS) may have an important role in shaping the TME. Members of the ECS, an entity that consists of cannabinoid receptors, endocannabinoids and their synthesizing/degrading enzymes, have been associated with both tumor growth and rejection. Immune cells express cannabinoid receptors and produce endocannabinoids, thereby forming an “immune endocannabinoid system”. Although in vitro effects of exogenous cannabinoids on immune cells are well described, the role of the ECS in the TME, and hence in tumor development and immunotherapy, is still elusive. This review/opinion discusses the possibility that the “immune endocannabinoid system” can fundamentally influence tumor progression. The widespread influence of cannabinoids on immune cell functions makes the members of the ECS an interesting target that could support immunotherapy.


2005 ◽  
Vol 201 (6) ◽  
pp. 859-870 ◽  
Author(s):  
Junko Sasaki ◽  
Takehiko Sasaki ◽  
Masakazu Yamazaki ◽  
Kunie Matsuoka ◽  
Choji Taya ◽  
...  

The membrane phospholipid phosphatidylinositol 4, 5-bisphosphate [PI(4,5)P2] is a critical signal transducer in eukaryotic cells. However, the physiological roles of the type I phosphatidylinositol phosphate kinases (PIPKIs) that synthesize PI(4,5)P2 are largely unknown. Here, we show that the α isozyme of PIPKI (PIPKIα) negatively regulates mast cell functions and anaphylactic responses. In vitro, PIPKIα-deficient mast cells exhibited increased degranulation and cytokine production after Fcε receptor-I cross-linking. In vivo, PIPKIα−/− mice displayed enhanced passive cutaneous and systemic anaphylaxis. Filamentous actin was diminished in PIPKIα−/− mast cells, and enhanced degranulation observed in the absence of PIPKIα was also seen in wild-type mast cells treated with latrunculin, a pharmacological inhibitor of actin polymerization. Moreover, the association of FcεRI with lipid rafts and FcεRI-mediated activation of signaling proteins was augmented in PIPKIα−/− mast cells. Thus, PIPKIα is a negative regulator of FcεRI-mediated cellular responses and anaphylaxis, which functions by controlling the actin cytoskeleton and dynamics of FcεRI signaling. Our results indicate that the different PIPKI isoforms might be functionally specialized.


Sign in / Sign up

Export Citation Format

Share Document