scholarly journals Persistence of Lactobacillus fermentum RC-14 and Lactobacillus rhamnosus GR-1 but Not L. rhamnosus GG in the Human Vagina as Demonstrated by Randomly Amplified Polymorphic DNA

2002 ◽  
Vol 9 (1) ◽  
pp. 92-96 ◽  
Author(s):  
Gillian E. Gardiner ◽  
Christine Heinemann ◽  
Andrew W. Bruce ◽  
Dee Beuerman ◽  
Gregor Reid

ABSTRACT Lactobacillus rhamnosus GR-1 and L. fermentum RC-14 are well-characterized probiotic strains with efficacy in the prevention and treatment of urogenital infections in women. The aim of the present study was to apply a molecular biology-based methodology for the detection of these strains and L. rhamnosus GG (a commercially available intestinal probiotic) in the human vagina in order to assess probiotic persistence at this site. Ten healthy women inserted vaginally a capsule containing either a combination of strains GR-1 and RC-14 or the GG strain for 3 consecutive nights. Vaginal swabs taken before and at various time points after probiotic insertion were analyzed, and the Lactobacillus flora was assessed by randomly amplified polymorphic DNA (RAPD) analysis. This method generated discrete DNA fingerprints for GR-1, RC-14, and GG and enabled successful detection of these strains in the vagina. Strain GR-1 and/or strain RC-14 was found to persist in the vaginal tract for up to 19 days after vaginal instillation, while L. rhamnosus GG was detectable for up to 5 days postadministration. In conclusion, the fates of probiotic L. rhamnosus and L. fermentum strains were successfully monitored in the human vagina by RAPD analysis. This technique provides molecular biology-based evidence that RC-14 and GR-1, strains selected as urogenital probiotics, persist in the human vagina and may be more suited to vaginal colonization than L. rhamnosus GG. This highlights the importance of proper selection of strains for urogenital probiotic applications.

2021 ◽  
Vol 06 (04) ◽  
pp. 1-1
Author(s):  
Scarlett Puebla-Barragan ◽  
◽  
Britney Lamb ◽  
Serenah Jafelice ◽  
Gregor Reid ◽  
...  

Vaginal care products are widely used by women to relieve discomfort such as pain, itching and malodour, all of which are commonly caused by conditions resulting from microbiota dysbiosis. Previous studies showed that probiotic strains Lacticaseibacillus (formerly Lactobacillus) rhamnosus GR-1 (LGR-1) and Limosilactobacillus (formerly Lactobacillus) reuteri RC-14 (LRC-14), can aid in restoring homeostasis in the vaginal microbiome when taken orally. A topical product containing these strains could be of value for reducing malodour and improving quality of life. However, the formulation of such a product is a challenge, given that its ingredients must maintain shelf-life viability by excluding moisture. Here, we tested petroleum jelly, mineral oil, coconut oil, and olive oil for how well they maintained the viability of freeze-dried probiotic strains over a six-month timeframe. None of the oils caused excessive loss of bacterial viability, with petroleum jelly and coconut oil showing the most promise. Based on existing knowledge of these oils on the female genitalia, coconut oil and petroleum jelly could be suitable probiotic carriers for clinical testing.


2019 ◽  
Vol 25 (7) ◽  
pp. 588-596 ◽  
Author(s):  
Facundo Cuffia ◽  
Yanina Pavón ◽  
Guillermo George ◽  
Jorge Reinheimer ◽  
Patricia Burns

The aim of this study was to manufacture pasta filata cheeses added with two probiotic lactobacilli: Lactobacillus rhamnosus GG and Lactobacillus acidophilus LA5, either individually or combined, and to evaluate the effect of the storage temperature (4 and 12 °C) on their chemical, microbiological, and sensorial characteristics. Three cheese types were made: (i) G: containing L. rhamnosus GG, (ii) L: containing L. acidophilus LA5, and (iii) GL: containing both probiotic strains. Gross composition, pH, microbiological, and sensory characteristics were determined. No differences in gross composition were found among them. pH values remained above 5.2 in cheeses stored at 4 °C. However, a postacidification was observed in cheeses ripened at 12 °C. L. acidophilus LA5 was not able to grow, while L. rhamnosus GG grew 1.5 log10 CFU/g in G and GL cheeses stored at 12 °C, reducing the pH from day 8 onwards. These results emphasize the importance of the storage temperature since the good characteristics of probiotic cheeses are kept if the cold-chain is respected. Thus, the selection of probiotics, together with the food matrix and the starter, should be carefully evaluated.


2021 ◽  
pp. 108201322110122
Author(s):  
Saranya Wongrattanapipat ◽  
Anchukorn Chiracharoenchitta ◽  
Budsarin Choowongwitthaya ◽  
Prapatson Komsathorn ◽  
Orawan La-ongkham ◽  
...  

From 61 lactic acid bacteria (LAB) isolates, three had good cholesterol-lowering properties, with Limosilactobacillus fermentum KUB-D18 having the highest cholesterol assimilation (68.75%) (51 µg/109 CFU). In addition, Lactiplantibacillus pentosus HM04-25 and L. pentosus HM04-3 had the two highest levels of bile salt hydrolase (BSH) activity (22.60 and 21.45 U/mL, respectively). These three strains could resist four antibiotics (aztreonam, vancomycin, teicoplanin, and nalidixic). However, fortunately, they contained no mobile antibiotic resistance genes. To evaluate the influence of probiotic strains in yoghurt production, L. fermentum KUB-D18, L. pentosus HM04-25, or L. pentosus HM04-3 were simultaneously cultured with commercial yoghurt starter (YF-L812) and incubated at 43 °C for 6 h. During yoghurt fermentation, the total bacteria in the yoghurt tended to increase from 7.39 to 8.90 log CFU/mL. The growth rates of two probiotic strains ( L. pentosus HM04-25 and L. pentosus HM04-3) were stable at 6.06 to 6.62 log CFU/mL. Only the rate for L. fermentum KUB-D18 increased (to 7.5 log CFU/mL). These three probiotics did not affect the physical characteristics of yoghurt. The total soluble solids, pH, and titratable acidity values of the probiotic yoghurts were similar to the control yoghurt at 30[Formula: see text]Brix, 4.91, and 0.90%, respectively. The firmness values of the probiotic yoghurts and the control were not significantly different (p > 0.05). Differentiation of the appearance of color, odor, flavor, and texture between the control yoghurt and the probiotic yoghurts was investigated using 56 volunteers and no significant differences were identified. Additionally, sensory evolution revealed that the acceptability of the probiotic yoghurts was higher than for the control (p ≤ 0.05). Therefore, the three probiotic strains with cholesterol-lowering properties had potential in future yoghurt production.


2005 ◽  
Vol 71 (10) ◽  
pp. 6008-6013 ◽  
Author(s):  
Domitille Fayol-Messaoudi ◽  
Cédric N. Berger ◽  
Marie-Hélène Coconnier-Polter ◽  
Vanessa Liévin-Le Moal ◽  
Alain L. Servin

ABSTRACT The mechanism(s) underlying the antibacterial activity of probiotic Lactobacillus strains appears to be multifactorial and includes lowering of the pH and the production of lactic acid and of antibacterial compounds, including bacteriocins and nonbacteriocin, non-lactic acid molecules. Addition of Dulbecco's modified Eagle's minimum essential medium to the incubating medium delays the killing activity of lactic acid. We found that the probiotic strains Lactobacillus johnsonii La1, Lactobacillus rhamnosus GG, Lactobacillus casei Shirota YIT9029, L. casei DN-114 001, and L. rhamnosus GR1 induced a dramatic decrease in the viability of Salmonella enterica serovar Typhimurium SL1344 mainly attributable to non-lactic acid molecule(s) present in the cell-free culture supernatant (CFCS). These molecules were more active against serovar Typhimurium SL1344 in the exponential growth phase than in the stationary growth phase. We also showed that the production of the non-lactic acid substance(s) responsible for the killing activity was dependent on growth temperature and that both unstable and stable substances with killing activity were present in the CFCSs. We found that the complete inhibition of serovar Typhimurium SL1344 growth results from a pH-lowering effect.


2012 ◽  
Vol 75 (6) ◽  
pp. 1090-1098 ◽  
Author(s):  
XINLONG HE ◽  
YUNYUN ZOU ◽  
YOUNGJAE CHO ◽  
JUHEE AHN

This study was designed to evaluate the effects of bile acid deconjugation by probiotic strains on the antibiotic susceptibility of antibiotic-sensitive and multiple antibiotic–resistant Salmonella Typhimurium and Staphylococcus aureus. Eight probiotic strains, Bifidobacterium longum B6, Lactobacillus acidophilus ADH, Lactobacillus brevis KACC 10553, Lactobacillus casei KACC 12413, Lactobacillus paracasei ATCC 25598, Lactobacillus rhamnosus GG, Leuconostoc mesenteroides KACC 12312, and Pediococcus acidilactici KACC 12307, were used to examine bile acid tolerance. The ability to deconjugate bile acids was evaluated using both thin-layer chromatography and high-performance liquid chromatography. The antibiotic susceptibility testing was carried out to determine the synergistic inhibitory activity of deconjugated bile acids. L. acidophilus, L. brevis, and P. acidilactici showed the most tolerance to the conjugated bile acids. P. acidilactici deconjugated glycocholic acid and glycodeoxycholate from 3.18 and 3.09 mM to the detection limits, respectively. The antibiotic susceptibility of selected foodborne pathogens was increased by increasing the concentration of deconjugated bile acids. The study results are useful for understanding the relationship between bile acid deconjugation by probiotic strains and antibiotic susceptibility in the presence of deconjugated bile acids, and they may be useful for designing new probiotic-antibiotic combination therapy based on bile acid deconjugation.


2020 ◽  
Vol 10 (2) ◽  
pp. 92
Author(s):  
Rosmaina Rosmaina ◽  
Dedi Mulyadi ◽  
Rita Elfianis ◽  
Zulfahmi Zulfahmi

Chili is an important horticultural plant in Indonesia. This research aims to carry out RAPD analysis on Mutant M2 of chili pepper (Capsicum annuum L.). Six M2 genotypes of chili irradiated by gamma ray and control plants were amplified by 16 random primers. The amplification results of M2 chili with 16 primers produced 118 loci, with fragment sizes ranging from 150-2000 bp. The number of polymorphic loci was 96 loci and the percentage of polymorphic loci was 83.23%. The DNA fragment polymorphism produced in this research was relatively high and it showed that the gamma ray mutagen applied produced high chili genetic diversity. The value of genetic similarity between control plants and mutant plants ranged from 0.7474 to 0.4874. UPGMA dendogram classified seven genotypes tested into three groups, the first group consisted of mutants R2U6 and R2U17, the second group was mutants R1U14 and R1U17, and the third group was mutants R2U8, mutants R2U2 and control plants. The finding of this research can be used as a basic selection of genetic material for chili’s breeding in the future.


2015 ◽  
Vol 13 (3) ◽  
pp. 243-249
Author(s):  
Youn-Lee Oh ◽  
Kab-Yeul Jang ◽  
Won-Sik Kong ◽  
Pyung-Gyun Shin ◽  
Eun-Sun Kim ◽  
...  

Biologia ◽  
2008 ◽  
Vol 63 (2) ◽  
Author(s):  
Francine Ishikawa ◽  
Elaine Souza ◽  
Livia Davide

AbstractColletotrichum lindemuthianum, the causal agent of anthracnose in the common bean (Phaseolus vulgaris), presents a wide genetic and pathogenic variability that gives rise to complications in the development of resistant bean cultivars. The aim of this study was to identify the variability within race 65 of C. lindemuthianum, the race most commonly encountered in Brazil, through randomly amplified polymorphic DNA (RAPD) and anastomosis analyses. Thirteen isolates of race 65, collected in different years and from various host cultivars located in diverse areas of the state of Minas Gerais, Brazil, were investigated. Twenty-four RAPD primers were employed and 83 polymorphic bands amplified. Genetic similarities were estimated from the Sorensen-Dice coefficient and ranged from 0.54 to 0.82. The dendrogram obtained by cluster analysis classified the isolates into 11 separate groups. For the purposes of the analysis of anastomosis, isolates were considered to be compatible when the fusion of hyphae from different isolates could be observed. The proportion of compatible reactions for each isolate was estimated and similarity estimates, based on the Russel & Rao coefficient, ranged from 0.28 to 0.85. Isolates were classified into 11 anastomosis groups, 10 of which were formed by only one isolate. Although isolates LV61, LV73 and LV58 were classified in the same anastomosis group, they were genetically distinct according to RAPD analysis. Results from both RAPD and anastomosis analyses revealed great variability within C. lindemuthianum race 65.


2020 ◽  
Vol 12 (02) ◽  
pp. 111-114
Author(s):  
Lipika Singhal ◽  
Varsha Gupta ◽  
Menal Gupta ◽  
Poonam Goel ◽  
Jagdish Chander

Abstract Objectives Healthy vaginal microbiota is mainly dominated by Lactobacillus species namely L. crispatus, L. gasseri, L. jensenii, and L. iners. Lactobacilli are thought to play an important role in the prevention of urogenital infections, and Lactobacillus probiotics to restore and/or maintain vaginal health has been advocated. These can interfere with the adherence, growth, and colonization by uropathogenic bacteria, thus reducing the risk of urinary tract infection (UTI). This study aims to isolate and evaluate the susceptibility of healthy vaginal and probiotic Lactobacillus spp. to urinary antibiotics. Materials and methods A total of 50 premenopausal, nonmenstruating women with no symptoms of vaginal infection or UTI or antimicrobial use in the past 2 weeks were enrolled. Two high vaginal swabs were collected for Nugent’s scoring and anaerobic culture. Colonies yielding gram-positive rods were confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Lactobacillus strains in a vaginal probiotic tablet were also isolated, and the sensitivity of both sets to urinary antibiotics was determined. Results A total of 29 Lactobacillus spp. were isolated, including L. crispatus (15), L. gasseri (5), L. vaginalis (4), L. paracasei (2), L. curvatus (1), L. fermentum (1), and L. paraplantarum (1). All strains were susceptible to nitrofurantoin and resistant to norfloxacin, gentamicin, and cotrimoxazole (except L. paracasei). The probiotic strains were pan-sensitive. Conclusions Prophylactic antibiotics are capable of eliminating the normal vaginal inhabitants, which may increase the probability of UTI. The administration of vaginal probiotics as an alternate or multidrug therapy can restore vaginal microbiota and help prevent recurrent UTI.


Sign in / Sign up

Export Citation Format

Share Document