scholarly journals Acquisition of Oral Microbes and Associated Systemic Responses of Newborn Nonhuman Primates

2013 ◽  
Vol 21 (1) ◽  
pp. 21-28 ◽  
Author(s):  
J. L. Ebersole ◽  
S. C. Holt ◽  
J. E. Delaney

ABSTRACTThe acquisition and development of the complex oral microbiome remain ill defined. While selected species of oral bacteria have been examined in relation to their initial colonization in neonates, a more detailed understanding of the dynamics of the microbiome has been developed only in adults. The current investigation used a nonhuman primate model to document the kinetics of colonization of the oral cavities of newborns and infants by a range of oral commensals and pathogens. Differences in colonization were evaluated in newborns from mothers who were maintained on an oral hygiene regimen pre- and postparturition with those displaying naturally acquired gingivitis/periodontitis. The results demonstrate distinct profiles of acquisition of selected oral bacteria, with the transmission of targeted pathogens,Porphyromonas gingivalisandAggregatibacter actinomycetemcomitans, being passed on primarily from mothers with gingivitis/periodontitis. This colonization resulted in defined patterns of systemic antibody responses in the infants. The significant relative risk measures for infection with the pathogens, as well as the relationship of oral infection and blood serum antibody levels, were consistent with those of the newborns from mothers with gingivitis/periodontitis. These findings indicate that the early acquisition of potentially pathogenic oral bacterial species might impact the development of mucosal responses in the gingiva and may provide an enhanced risk for the development of periodontitis later in life.

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
León Francisco Espinosa-Cristóbal ◽  
Carolina Holguín-Meráz ◽  
Erasto Armando Zaragoza-Contreras ◽  
Rita Elizabeth Martínez-Martínez ◽  
Alejandro Donohue-Cornejo ◽  
...  

The dental plaque is an oral microbiome hardly associated to be the etiological agent of dental caries and periodontal disease which are still considered serious health public problems. Silver nanoparticles (AgNPs) have demonstrated to have good antimicrobial properties affecting a wide variety of microorganisms, including oral bacteria; however, there is no scientific information that has evaluated the antimicrobial effect of AgNPs against clinical oral biofilms associated with dental caries and periodontal disease. The aim of this study was to determine the antimicrobial and substantivity effects of AgNPs in oral biofilms isolated clinically from patients with dental caries and periodontal disease. Sixty-seven young and young-adult subjects with dental caries and periodontal disease were clinically sampled through the collection of subgingival dental plaque. The inhibitory effect of AgNPs was performed with standard microbiological assays by triplicate using two sizes of particle. Polymerase chain reaction (PCR) assay was used to identify the presence of specific bacterial species. All AgNPs showed an inhibitory effect for all oral biofilms for any age and, generally, any gender (p>0.05); however, the effectiveness of the antimicrobial and substantivity effects was related to particle size, time, and gender (p<0.05). The identified microorganisms were S. mutans, S. sobrinus, S. sanguinis, S. gordonii, S. oralis, P. gingivalis, T. forsythia, and P. intermedia. The AgNPs could be considered as a potential antimicrobial agent for the control and prevention of dental caries and periodontal disease.


2021 ◽  
Vol 16 (3) ◽  
pp. 36-43
Author(s):  
Roshna Mohamed Qadir ◽  
Mahde Saleh Assafi

Introduction: Microbiome status is considered an important factor that contributes to obesity. Investigations have shown that the oral microbiome comprises a vast array of bacterial species that can influence human health. Objective: To determine the association between the presence of the bacterial phyla Firmicutes and Bacteroidetes and the body mass index (BMI) status of normal, overweight and obese subjects in Duhok, Iraq. Additionally, to investigate the composition of oral Firmicutes and Bacteroidetes profiles for individuals with different BMI statuses. Methods: A total of 155 saliva samples were collected from participants in Duhok, Iraq. Bacterial genomic DNA was then extracted from the collected saliva. The presence of Firmicutes and Bacteroidetes phyla was detected via polymerase chain reaction. Results: Firmicutes and Bacteroidetes were detected in 63.2 and 37.4% of the population, respectively. Differences in the carriage rates of oral Firmicutes in overweight (78%) and obese individuals (83%) were statistically significant when compared to normal weight individuals (36%) (P<0.0001). The percentage rates of Bacteroidetes in obese individuals (26.4%) was statistically significant when compared to normal weight individuals (50.8%) (P=0.0078). The Firmicutes/Bacteroidetes ratios (obese=3.1, overweight=2.5 and normal weight=0.7) were higher with increasing BMI. Conclusion: This study provides evidence of the Firmicutes/Bacteroidetes ratio growing with increasing BMI. High rates of Firmicutes could serve a role in the development of obesity. Further studies are required to clarify the exact relationship between oral bacteria and obesity, which could lead to a promising therapeutic method for improving the physical health of humans.


2020 ◽  
Vol 99 (9) ◽  
pp. 1021-1029 ◽  
Author(s):  
S. Kitamoto ◽  
H. Nagao-Kitamoto ◽  
R. Hein ◽  
T.M. Schmidt ◽  
N. Kamada

More than 100 trillion symbiotic microorganisms constitutively colonize throughout the human body, including the oral cavity, the skin, and the gastrointestinal tract. The oral cavity harbors one of the most diverse and abundant microbial communities within the human body, second to the community that resides in the gastrointestinal tract, and is composed of >770 bacterial species. Advances in sequencing technologies help define the precise microbial landscape in our bodies. Environmental and functional differences render the composition of resident microbiota largely distinct between the mouth and the gut and lead to the development of unique microbial ecosystems in the 2 mucosal sites. However, it is apparent that there may be a microbial connection between these 2 mucosal sites in the context of disease pathogenesis. Accumulating evidence indicates that resident oral bacteria can translocate to the gastrointestinal tract through hematogenous and enteral routes. The dissemination of oral microbes to the gut may exacerbate various gastrointestinal diseases, including irritable bowel syndrome, inflammatory bowel disease, and colorectal cancer. However, the precise role that oral microbes play in the extraoral organs, including the gut, remains elusive. Here, we review the recent findings on the dissemination of oral bacteria to the gastrointestinal tract and their possible contribution to the pathogenesis of gastrointestinal diseases. Although little is known about the mechanisms of ectopic colonization of the gut by oral bacteria, we also discuss the potential factors that allow the oral bacteria to colonize the gut.


Author(s):  
Xin Lyu ◽  
Hui Zheng ◽  
Xu Wang ◽  
Heyu Zhang ◽  
Lu Gao ◽  
...  

Oral microbiota is constantly changing with the host state, whereas the oral microbiome of chronic erythematous candidiasis remains poorly understood. The aim of this study was to compare oral microbial signatures and functional profiling between chronic erythematous candidiasis and healthy subjects. Using shotgun metagenomic sequencing, we analyzed the microbiome in 12 chronic erythematous candidiasis, 12 healthy subjects, and 2 chronic erythematous candidiasis cured by antifungal therapy. We found that the salivary microbiota of chronic erythematous candidiasis was significantly different from that of healthy subjects. Among them, Rothia mucilaginosa and Streptococcus mitis were the most abundant disease-enriched species (Mann-Whitney U-test, P &lt; 0.05). In addition, co-occurrence network analysis showed that C. albicans formed densely connected modules with oral bacterial species and was mainly positive connected to Streptococcus species. Furthermore, we investigated the functional potentials of the microbiome and identified a set of microbial marker genes associated with chronic erythematous candidiasis. Some of these genes enriching in chronic erythematous candidiasis are involved in eukaryotic ribosome, putative glutamine transport system, and cytochrome bc1 complex respiratory unit. Altogether, this study revealed the changes of oral microbial composition, the co-occurrence between C. albicans and oral bacteria, as well as the changes of microbial marker genes during chronic erythematous candidiasis, which provides evidence of oral microbiome as a target for the treatment and prevention of chronic erythematous candidiasis.


mSystems ◽  
2018 ◽  
Vol 3 (3) ◽  
Author(s):  
Clifford J. Beall ◽  
Alisha G. Campbell ◽  
Ann L. Griffen ◽  
Mircea Podar ◽  
Eugene J. Leys

ABSTRACTDespite decades of research into the human oral microbiome, many species remain uncultivated. The technique of single-cell whole-genome amplification and sequencing provides a means of deriving genome sequences for species that can be informative on biological function and suggest pathways to cultivation.Tannerella forsythiahas long been known to be highly associated with chronic periodontitis and to cause periodontitis-like symptoms in experimental animals, andTannerellasp. BU045 (human oral taxon 808) is an uncultivated relative of this organism. In this work, we extend our previous sequencing of theTannerellasp. BU063 (human oral taxon 286) genome by sequencing amplified genomes from 11 cells ofTannerellasp. BU045, including 3 genomes that are at least 90% complete.Tannerellasp. BU045 is more closely related toTannerellasp. BU063 than toT. forsythiaby gene content and average nucleotide identity. However, two independent data sets of association with periodontitis, one based on 16S rRNA gene abundance and the other based on gene expression in a metatranscriptomic data set, show thatTannerellasp. BU045 is more highly associated with disease thanTannerellasp. BU063. Comparative genomics shows genes and functions that are shared or unique to the different species, which may direct further research of the pathogenesis of chronic periodontitis.IMPORTANCEPeriodontitis (gum disease) affects 47% of adults over 30 in the United States (P. I. Eke, B. A. Dye, L. Wei, G. O. Thornton-Evans, R. J. Genco, et al., J Dent Res 91:914–920, 2012), and it cost between $39 and $396 billion worldwide in 2015 (A. J. Righolt, M. Jevdjevic, W. Marcenes, and S. Listl, J Dent Res, 17 January 2018, https://doi.org/10.1177/0022034517750572). Many bacteria associated with the disease are known only by the DNA sequence of their 16S rRNA gene. In this publication, amplification and sequencing of DNA from single bacterial cells are used to obtain nearly complete genomes ofTannerellasp. BU045, a species of bacteria that is more prevalent in patients with periodontitis than in healthy patients. Comparing the complete genome of this bacterium to genomes of related bacterial species will help to better understand periodontitis and may help to grow this organism in pure culture, which would allow a better understanding of its role in the mouth.


Author(s):  
Neeli Habib ◽  
Manik Prabhu Narsing Rao ◽  
Min Xiao ◽  
Sohail Ahmad Jan ◽  
Wen-Jun Li

The present study was carried out to re-clarify the taxonomic relationship of Caldicellulosiruptor acetigenus , Caldicellulosiruptor lactoaceticus and Caldicellulosiruptor kristjanssonii . The 16S rRNA sequence similarities between these species of the genus Caldicellulosiruptor were above the threshold values (98.65%) for bacterial species delineation. Similarly, the digital DNA–DNA hybridization and average nucleotide and amino acid identity values were greater than the thresholds for bacterial species delineation. In phylogenetic (based on 16S rRNA gene sequences) and phylogenomic trees Caldicellulosiruptor acetigenus , Caldicellulosiruptor lactoaceticus and Caldicellulosiruptor kristjanssonii clade together. The results of our analysis indicated that these three taxa are conspecific. Therefore, Caldicellulosiruptor lactoaceticus Mladenovska et al. 1997 and Caldicellulosiruptor kristjanssonii Bredholt et al. 1999 should be reclassified as later heterotypic synonyms of Caldicellulosiruptor acetigenus (Nielsen et al. 1994) Onyenwoke et al. 2006.


2018 ◽  
Vol 9 (1-2) ◽  
pp. 15-19 ◽  
Author(s):  
Sepideh Bahlouli ◽  
Zahra Aghazadeh ◽  
Marzieh Aghazadeh ◽  
Sevda Shojani ◽  
Hossein Samadi Kafil

Aims and Objectives Mouthwashes with antibacterial activity inhibit the growth of bacteria in the mouth and teeth. Chlorhexidine is one of the most widely used mouthwashes that inhibits dental plaque and prevents tooth surface decay. Recently, concerns have been raised that alcohol-containing mouthwashes may have carcinogenic properties and may be harmful to children and pregnant and lactating women. The aim of this study was to determine the antibacterial effects of chlorhexidine mouthwashes with and without alcohol on common oral bacteria. Material and Methods In this in vitro study, bacterial species were purchased from a research center and were cultured separately in proprietary environments in test tubes. Thereafter, mouthwashes with alcohol, without alcohol, and with salt water (saline) were added to test tubes containing the bacteria grown. The samples were then analyzed using a spectrophotometer to determine viability, growth rate, and bacteria waste. Finally, the data were analyzed using SPSS version 17 through analysis of variance (ANOVA) and Tukey statistical tests. Results The obtained results showed that the saline group had the highest antibacterial activity and that the average antibacterial activity of the alcohol and alcohol-free groups did not differ significantly (P > 0.05). Post hoc test results showed that the antibacterial activity of the saline group was significantly different statistically from that of the other two groups. Conclusion On the basis of the results, it can be concluded that both alcohol-free chlorhexidine and alcohol-containing chlorhexidine are effective in removing oral microbes. Moreover, by using alcohol-free chlorhexidine, the harmful effects of alcohol can be prevented.


2020 ◽  
Vol 99 (13) ◽  
pp. 1411-1424 ◽  
Author(s):  
F.R.F. Teles ◽  
F. Alawi ◽  
R.M. Castilho ◽  
Y. Wang

Several epidemiological investigations have found associations between poor oral health and different types of cancer, including colorectal, lung, pancreatic, and oral malignancies. The oral health parameters underlying these relationships include deficient oral hygiene, gingival bleeding, and bone and tooth loss. These parameters are related to periodontal diseases, which are directly and indirectly mediated by oral bacteria. Given the increased accessibility of microbial sequencing platforms, many recent studies have investigated the link between the oral microbiome and these cancers. Overall, it seems that oral dysbiotic states can contribute to tumorigenesis in the oral cavity as well as in distant body sites. Further, it appears that certain oral bacterial species can contribute to carcinogenesis, in particular, Fusobacterium nucleatum and Porphyromonas gingivalis, based on results from epidemiological as well as mechanistic studies. Yet, the strength of the findings from these investigations is hampered by the heterogeneity of the methods used to measure oral diseases, the treatment of confounding factors, the study design, the platforms employed for microbial analysis, and types of samples analyzed. Despite these limitations, there is an overall indication that the presence of oral dysbiosis that leads to oral diseases may directly and/or indirectly contribute to carcinogenesis. Proper methodological standardized approaches should be implemented in future epidemiological studies as well as in the mechanistic investigations carried out to explore these results.


2010 ◽  
Vol 78 (4) ◽  
pp. 1789-1796 ◽  
Author(s):  
Yann Fardini ◽  
Peter Chung ◽  
Rochelle Dumm ◽  
Nishiant Joshi ◽  
Yiping W. Han

ABSTRACT Microbial infection of the intrauterine environment is a major cause of preterm birth. The current paradigm indicates that intrauterine infections predominantly originate from the vaginal tract, with the organisms ascending into the sterile uterus. With the improvements in technology, an increasing number of bacterial species have been identified in intrauterine infections that do not belong to the vaginal microflora. We have demonstrated previously that intrauterine infections can originate from the oral cavity following hematogenous transmission. In this study, we begin to systemically examine what proportion of the oral microbiome can translocate to the placenta. Pooled saliva and pooled subgingival plaque samples were injected into pregnant mice through tail veins to mimic bacteremia, which occurs frequently during periodontal infections. The microbial species colonizing the murine placenta were detected using 16S rRNA gene-based PCR and clone analysis. A diverse group of bacterial species were identified, many of which have been associated with adverse pregnancy outcomes in humans although their sources of infection were not determined. Interestingly, the majority of these species were oral commensal organisms. This may be due to a dose effect but may also indicate a unique role of commensal species in intrauterine infection. In addition, a number of species were selectively “enriched” during the translocation, with a higher prevalence in the placenta than in the pooled saliva or subgingival plaque samples. These observations indicate that the placental translocation was species specific. This study provides the first insight into the diversity of oral bacteria associated with intrauterine infection.


Sign in / Sign up

Export Citation Format

Share Document