scholarly journals Identification of Immunogenic and Virulence-Associated Campylobacter jejuni Proteins

2011 ◽  
Vol 19 (2) ◽  
pp. 113-119 ◽  
Author(s):  
Lene N. Nielsen ◽  
Thomas A. Luijkx ◽  
Christina S. Vegge ◽  
Christina Kofoed Johnsen ◽  
Piet Nuijten ◽  
...  

ABSTRACTWith the aim of identifying proteins important for host interaction and virulence, we have screened an expression library of NCTC 11168Campylobacter jejunigenes for highly immunogenic proteins. A commercialC. jejuniopen reading frame (ORF) library consisting of more than 1,600 genes was transformed into theEscherichia coliexpression strain BL21(DE3), resulting in 2,304 clones. This library was subsequently screened for immunogenic proteins using antibodies raised in rabbit against a clinical isolate ofC. jejuni; this resulted in 52 highly reactive clones representing 25 different genes after sequencing. Selected candidate genes were inactivated inC. jejuniNCTC 11168, and the virulence was examined using INT 407 epithelial cell line and motility, biofilm, autoagglutination, and serum resistance assays. These investigations revealedC. jejuniantigen 0034c (Cj0034c) to be a novel virulence factor and support the usefulness of the method. Further, several antigens were tested as vaccine candidates in two mouse models, in which Cj0034c, Cj0404, and Cj0525c resulted in a reduction of invasion in spleen and liver after challenge.

2015 ◽  
Vol 83 (12) ◽  
pp. 4884-4895 ◽  
Author(s):  
Waheed Jowiya ◽  
Katja Brunner ◽  
Sherif Abouelhadid ◽  
Haitham A. Hussain ◽  
Sean P. Nair ◽  
...  

Campylobacter jejuniis a commensal bacterium in the intestines of animals and birds and a major cause of food-borne gastroenteritis in humans worldwide. Here we show that exposure to pancreatic amylase leads to secretion of an α-dextran byC. jejuniand that a secreted protease, Cj0511, is required. Exposure ofC. jejunito pancreatic amylase promotes biofilm formationin vitro, increases interaction with human epithelial cell lines, increases virulence in theGalleria mellonellainfection model, and promotes colonization of the chicken ileum. We also show that exposure to pancreatic amylase protectsC. jejunifrom stress conditionsin vitro, suggesting that the induced α-dextran may be important during transmission between hosts. This is the first evidence that pancreatic amylase functions as an interkingdom signal in an enteric microorganism.


2017 ◽  
Vol 85 (11) ◽  
Author(s):  
Zifeng Han ◽  
Thomas Willer ◽  
Li Li ◽  
Colin Pielsticker ◽  
Ivan Rychlik ◽  
...  

ABSTRACT The Campylobacter jejuni-host interaction may be affected by the host's gut microbiota through competitive exclusion, metabolites, or modification of the immune response. To understand this interaction, C. jejuni colonization and local immune responses were compared in chickens with different gut microbiota compositions. Birds were treated with an antibiotic cocktail (AT) (experiments 1 and 2) or raised under germfree (GF) conditions (experiment 3). At 18 days posthatch (dph), they were orally inoculated either with 104 CFU of C. jejuni or with diluent. Cecal as well as systemic C. jejuni colonization, T- and B-cell numbers in the gut, and gut-associated tissue were compared between the different groups. Significantly higher numbers of CFU of C. jejuni were detected in the cecal contents of AT and GF birds, with higher colonization rates in spleen, liver, and ileum, than in birds with a conventional gut microbiota (P < 0.05). Significant upregulation of T and B lymphocyte numbers was detected in cecum, cecal tonsils, and bursa of Fabricius of AT or GF birds after C. jejuni inoculation compared to the respective controls (P < 0.05). This difference was less clear in birds with a conventional gut microbiota. Histopathological gut lesions were observed only in C. jejuni-inoculated AT and GF birds but not in microbiota-colonized C. jejuni-inoculated hatchmates. These results demonstrate that the gut microbiota may contribute to the control of C. jejuni colonization and prevent lesion development. Further studies are needed to identify key players of the gut microbiota and the mechanisms behind their protective role.


2020 ◽  
Author(s):  
Mujahed I. Mustafa ◽  
Abdelrahman H. Abdelmoneim ◽  
Abdelrafie M. Makhawi

Vaccination as defined by the WHO is “the administration of agent-specific, but safe, antigenic components that in vaccinated individuals can induce protective immunity against the corresponding infectious agent”. Regardless of their debated history, the standard vaccine approaches have been unsuccessful in providing vaccines for numerous infectious organisms. In the recent three decades, an enormous amount of immunological data was retrieved from clinical studies  due to the advancement in human genome sequencing. These data are being deposited in databases and numerous scientific literature. The development of several bioinformatics tools to analyze this rapidly increasing immunological databank has given rise to the field of immunoinformatics. This approach allows the selection of immunogenic residues from the pathogen genomes. The ideal residues could be industrialized as vaccine candidates to provide protective immune responses in the hosts. This methodology will significantly decrease the time and cost needed for the vaccine development.  This review focus on  published articles that proposed as vaccine candidates through immunoinformatics analysis. The reviewed  Published immunoinformatics studies provided vaccine peptide candidates against SARS-COV-2, which is based on functional and non functional immunogenic proteins like open reading frame , spike protein, envelope protein and membranous protein .All of which  are designed by unique strategies like reverse vaccinology . Spike protein was the most common used target with different suggeststed B and T cell peptides  due to the difference in methodology between the findings.


2011 ◽  
Vol 79 (9) ◽  
pp. 3527-3540 ◽  
Author(s):  
Erin K. Lentz ◽  
Dinorah Leyva-Illades ◽  
Moo-Seung Lee ◽  
Rama P. Cherla ◽  
Vernon L. Tesh

ABSTRACTShiga toxins (Stxs) are expressed by the enteric pathogensShigella dysenteriaeserotype 1 and certain serotypes ofEscherichia coli. Stx-producing bacteria cause bloody diarrhea with the potential to progress to acute renal failure. Stxs are potent protein synthesis inhibitors and are the primary virulence factors responsible for renal damage that may follow diarrheal disease. We explored the use of the immortalized human proximal tubule epithelial cell line HK-2 as anin vitromodel of Stx-induced renal damage. We showed that these cells express abundant membrane Gb3and are differentially susceptible to the cytotoxic action of Stxs, being more sensitive to Shiga toxin type 1 (Stx1) than to Stx2. At early time points (24 h), HK-2 cells were significantly more sensitive to Stxs than Vero cells; however, by 72 h, Vero cell monolayers were completely destroyed while some HK-2 cells survived toxin challenge, suggesting that a subpopulation of HK-2 cells are relatively toxin resistant. Fluorescently labeled Stx1 B subunits localized to both lysosomal and endoplasmic reticulum (ER) compartments in HK-2 cells, suggesting that differences in intracellular trafficking may play a role in susceptibility to Stx-mediated cytotoxicity. Although proinflammatory cytokines were not upregulated by toxin challenge, Stx2 selectively induced the expression of two chemokines, macrophage inflammatory protein-1α (MIP-1α) and MIP-1β. Stx1 and Stx2 differentially activated components of the ER stress response in HK-2 cells. Finally, we demonstrated significant poly(ADP-ribose) polymerase (PARP) cleavage after exposure to Stx1 or Stx2. However, procaspase 3 cleavage was undetectable, suggesting that HK-2 cells may undergo apoptosis in response to Stxs in a caspase 3-independent manner.


2011 ◽  
Vol 77 (9) ◽  
pp. 3023-3034 ◽  
Author(s):  
Ya-Jie Tang ◽  
Wei Zhao ◽  
Hong-Mei Li

ABSTRACTAccording to the structure of podophyllotoxin and its structure-function relationship, a novel tandem biotransformation process was developed for the directional modification of the podophyllotoxin structure to directionally synthesize a novel compound, 4-(2,3,5,6-tetramethylpyrazine-1)-4′-demethylepipodophyllotoxin (4-TMP-DMEP). In this novel tandem biotransformation process, the starting substrate of podophyllotoxin was biotransformed into 4′-demethylepipodophyllotoxin (product 1) with the demethylation of the methoxyl group at the 4′ position byGibberella fujikuroiSH-f13, which was screened out from Shennongjia prime forest humus soil (Hubei, China). 4′-Demethylepipodophyllotoxin (product 1) was then biotransformed into 4′-demethylpodophyllotoxone (product 2) with the oxidation of the hydroxyl group at the 4 position byAlternaria alternataS-f6, which was screened out from the gatheredDysosma versipellisplants in the Wuhan Botanical Garden, Chinese Academy of Sciences. Finally, 4′-demethylpodophyllotoxone (product 2) and ligustrazine were linked with a transamination reaction to synthesize the target product 4-TMP-DMEP (product 3) byAlternaria alternataS-f6. Compared with podophyllotoxin (i.e., a 50% effective concentration [EC50] of 529 μM), the EC50of 4-TMP-DMEP against the tumor cell line BGC-823 (i.e., 0.11 μM) was significantly reduced by 5,199 times. Simultaneously, the EC50of 4-TMP-DMEP against the normal human proximal tubular epithelial cell line HK-2 (i.e., 0.40 μM) was 66 times higher than that of podophyllotoxin (i.e., 0.006 μM). Furthermore, compared with podophyllotoxin (i.e., logP= 0.34), the water solubility of 4-TMP-DMEP (i.e., logP= 0.66) was significantly enhanced by 94%. For the first time, the novel compound 4-TMP-DMEP with superior antitumor activity was directionally synthesized from podophyllotoxin by the novel tandem biotransformation process developed in this work.


2017 ◽  
Vol 85 (6) ◽  
Author(s):  
Orhan Sahin ◽  
Samantha A. Terhorst ◽  
Eric R. Burrough ◽  
Zhangqi Shen ◽  
Zuowei Wu ◽  
...  

ABSTRACT Campylobacter jejuni is a zoonotic pathogen, and a hypervirulent clone, named clone SA, has recently emerged as the predominant cause of ovine abortion in the United States. To induce abortion, orally ingested Campylobacter must translocate across the intestinal epithelium, spread systemically in the circulation, and reach the fetoplacental tissue. Bacterial factors involved in these steps are not well understood. C. jejuni is known to produce capsular polysaccharide (CPS), but the specific role that CPS plays in systemic infection and particularly abortion in animals remains to be determined. In this study, we evaluated the role of CPS in bacteremia using a mouse model and in abortion using a pregnant guinea pig model following oral challenge. Compared with C. jejuni NCTC 11168 and 81-176, a clone SA isolate (IA3902) resulted in significantly higher bacterial counts and a significantly longer duration of bacteremia in mice. The loss of capsule production via gene-specific mutagenesis in IA3902 led to the complete abolishment of bacteremia in mice and abortion in pregnant guinea pigs, while complementation of capsule expression almost fully restored these phenotypes. The capsule mutant strain was also impaired for survival in guinea pig sera and sheep blood. Sequence-based analyses revealed that clone SA possesses a unique CPS locus with a mosaic structure, which has been stably maintained in all clone SA isolates derived from various hosts and times. These findings establish CPS as a key virulence factor for the induction of systemic infection and abortion in pregnant animals and provide a viable candidate for the development of vaccines against hypervirulent C. jejuni.


2002 ◽  
Vol 70 (2) ◽  
pp. 787-793 ◽  
Author(s):  
Patricia Guerry ◽  
Christine M. Szymanski ◽  
Martina M. Prendergast ◽  
Thomas E. Hickey ◽  
Cheryl P. Ewing ◽  
...  

ABSTRACT The outer cores of the lipooligosaccharides (LOS) of many strains of Campylobacter jejuni mimic human gangliosides in structure. A population of cells of C. jejuni strain 81-176 produced a mixture of LOS cores which consisted primarily of structures mimicking GM2 and GM3 gangliosides, with minor amounts of structures mimicking GD1b and GD2. Genetic analyses of genes involved in the biosynthesis of the outer core of C. jejuni 81-176 revealed the presence of a homopolymeric tract of G residues within a gene encoding CgtA, an N-acetylgalactosaminyltransferase. Variation in the number of G residues within cgtA affected the length of the open reading frame, and these changes in cgtA corresponded to a change in LOS structure from GM2 to GM3 ganglioside mimicry. Site-specific mutation of cgtA in 81-176 resulted in a major LOS core structure that lacked GalNAc and resembled GM3 ganglioside. Compared to wild-type 81-176, the cgtA mutant showed a significant increase in invasion of INT407 cells. In comparison, a site-specific mutation of the neuC1 gene resulted in the loss of sialic acid in the LOS core and reduced resistance to normal human serum but had no affect on invasion of INT407 cells.


Microbiology ◽  
2021 ◽  
Vol 167 (10) ◽  
Author(s):  
Mengting Shi ◽  
Yue Zheng ◽  
Xianghong Wang ◽  
Zhengjia Wang ◽  
Menghua Yang

Vibrio cholerae the causative agent of cholera, uses a large number of coordinated transcriptional regulatory events to transition from its environmental reservoir to the host intestine, which is its preferred colonization site. Transcription of the mannose-sensitive haemagglutinin pilus (MSHA), which aids the persistence of V. cholerae in aquatic environments, but causes its clearance by host immune defenses, was found to be regulated by a yet unknown mechanism during the infection cycle of V. cholerae . In this study, genomic expression library screening revealed that two regulators, VC1371 and VcRfaH, are able to positively activate the transcription of MSHA operon. VC1371 is localized and active in the cell membrane. Deletion of vc1371 or VcrfaH genes in V. cholerae resulted in less MshA protein production and less efficiency of biofilm formation compared to that in the wild-type strain. An adult mouse model showed that the mutants with vc1371 or VcrfaH deletion colonized less efficiently than the wild-type; the VcrfaH deletion mutant showed less colonization efficiency in the infant mouse model. The findings strongly suggested that the two regulators, namely VC1371 and VcRfaH, which are involved in the regulation of MSHA expression, play an important role in V. cholerae biofilm formation and colonization in mice.


2018 ◽  
Vol 84 (23) ◽  
Author(s):  
Ximin Zeng ◽  
Zuowei Wu ◽  
Qijing Zhang ◽  
Jun Lin

ABSTRACTConjugation is an important mechanism for horizontal gene transfer inCampylobacter jejuni, the leading cause of human bacterial gastroenteritis in developed countries. However, to date, the factors that significantly influence conjugation efficiency inCampylobacterspp. are still largely unknown. Given that multiple recombinant loci could independently occur within one recipient cell during natural transformation, the genetic materials from a high-frequency conjugation (HFC)C. jejunistrain may be cotransformed with a selection marker into a low-frequency conjugation (LFC) recipient strain, creating new HFC transformants suitable for the identification of conjugation factors using a comparative genomics approach. To test this, an erythromycin resistance selection marker was created in an HFCC. jejunistrain; subsequently, the DNA of this strain was naturally transformed into NCTC 11168, an LFCC. jejunistrain, leading to the isolation of NCTC 11168-derived HFC transformants. Whole-genome sequencing analysis and subsequent site-directed mutagenesis identified Cj1051c, a putative restriction-modification enzyme (akaCjeI) that could drastically reduce the conjugation efficiency of NCTC 11168 (>5,000-fold). Chromosomal complementation of three diverse HFCC. jejunistrains with CjeI also led to a dramatic reduction in conjugation efficiency (∼1,000-fold). The purified recombinant CjeI could effectively digest theEscherichia coli-derived shuttle vector pRY107. The endonuclease activity of CjeI was abolished upon short heat shock treatment at 50°C, which is consistent with our previous observation that heat shock enhanced conjugation efficiency inC. jejuni. Together, in this study, we successfully developed and utilized a unique cotransformation strategy to identify a restriction-modification enzyme that significantly influences conjugation efficiency inC. jejuni.IMPORTANCEConjugation is an important horizontal gene transfer mechanism contributing to the evolution of bacterial pathogenesis and antimicrobial resistance.Campylobacter jejuni, the leading foodborne bacterial organism, displays significant strain diversity due to horizontal gene transfer; however, the molecular components influencing conjugation efficiency inC. jejuniare still largely unknown. In this study, we developed a cotransformation strategy for comparative genomics analysis and successfully identified a restriction-modification enzyme that significantly influences conjugation efficiency inC. jejuni. The new cotransformation strategy developed in this study is also expected to be broadly applied in other naturally competent bacteria for functional comparative genomics research.


2018 ◽  
Vol 85 (4) ◽  
Author(s):  
Sara Kovanen ◽  
Mirko Rossi ◽  
Mari Pohja-Mykrä ◽  
Timo Nieminen ◽  
Mirja Raunio-Saarnisto ◽  
...  

ABSTRACTPoultry are considered a major reservoir and source of human campylobacteriosis, but the roles of environmental reservoirs, including wild birds, have not been assessed in depth. In this study, we isolated and characterizedCampylobacter jejunifrom western jackdaws (n= 91, 43%), mallard ducks (n= 82, 76%), and pheasants (n= 9, 9%). Most of the western jackdaw and mallard duckC. jejuniisolates represented multilocus sequence typing (MLST) sequence types (STs) that diverged from those previously isolated from human patients and various animal species, whereas all pheasant isolates represented ST-19, a common ST among human patients and other hosts worldwide. Whole-genome MLST revealed that mallard duck ST-2314 and pheasant ST-19 isolates represented bacterial clones that were genetically highly similar to human isolates detected previously. Further analyses revealed that in addition to a divergent ClonalFrame genealogy, certain genomic characteristics of the western jackdawC. jejuniisolates, e.g., a novelcdtABCgene cluster and the type VI secretion system (T6SS), may affect their host specificity and virulence. Game birds may thus pose a risk for acquiring campylobacteriosis; therefore, hygienic measures during slaughter and meat handling warrant special attention.IMPORTANCEThe roles of environmental reservoirs, including wild birds, in the molecular epidemiology ofCampylobacter jejunihave not been assessed in depth. Our results showed that game birds may pose a risk for acquiring campylobacteriosis, because they hadC. jejunigenomotypes highly similar to human isolates detected previously. Therefore, hygienic measures during slaughter and meat handling warrant special attention. On the contrary, a unique phylogeny was revealed for the western jackdaw isolates, and certain genomic characteristics identified among these isolates are hypothesized to affect their host specificity and virulence. Comparative genomics within sequence types (STs), using whole-genome multilocus sequence typing (wgMLST), and phylogenomics are efficient methods to analyze the genomic relationships ofC. jejuniisolates.


Sign in / Sign up

Export Citation Format

Share Document