scholarly journals Anaerobicity Prepares Saccharomyces cerevisiae Cells for Faster Adaptation to Osmotic Shock

2004 ◽  
Vol 3 (6) ◽  
pp. 1381-1390 ◽  
Author(s):  
Marcus Krantz ◽  
Bodil Nordlander ◽  
Hadi Valadi ◽  
Mikael Johansson ◽  
Lena Gustafsson ◽  
...  

ABSTRACT Yeast cells adapt to hyperosmotic shock by accumulating glycerol and altering expression of hundreds of genes. This transcriptional response of Saccharomyces cerevisiae to osmotic shock encompasses genes whose products are implicated in protection from oxidative damage. We addressed the question of whether osmotic shock caused oxidative stress. Osmotic shock did not result in the generation of detectable levels of reactive oxygen species (ROS). To preclude any generation of ROS, osmotic shock treatments were performed in anaerobic cultures. Global gene expression response profiles were compared by employing a novel two-dimensional cluster analysis. The transcriptional profiles following osmotic shock under anaerobic and aerobic conditions were qualitatively very similar. In particular, it appeared that expression of the oxidative stress genes was stimulated upon osmotic shock even if there was no apparent need for their function. Interestingly, cells adapted to osmotic shock much more rapidly under anaerobiosis, and the signaling as well as the transcriptional response was clearly attenuated under these conditions. This more rapid adaptation is due to an enhanced glycerol production capacity in anaerobic cells, which is caused by the need for glycerol production in redox balancing. Artificially enhanced glycerol production led to an attenuated response even under aerobic conditions. These observations demonstrate the crucial role of glycerol accumulation and turgor recovery in determining the period of osmotic shock-induced signaling and the profile of cellular adaptation to osmotic shock.

2001 ◽  
Vol 21 (1) ◽  
pp. 175-184 ◽  
Author(s):  
Omri Erez ◽  
Chaim Kahana

ABSTRACT Although most cells are capable of transporting polyamines, the mechanism that regulates polyamine transport in eukaryotes is still largely unknown. Using a genetic screen for clones capable of restoring spermine sensitivity to spermine-tolerant mutants ofSaccharomyces cerevisiae, we have demonstrated that Sky1p, a recently identified SR protein kinase, is a key regulator of polyamine transport. Yeast cells deleted for SKY1 developed tolerance to toxic levels of spermine, while overexpression of Sky1p in wild-type cells increased their sensitivity to spermine. Expression of the wild-type Sky1p but not of a catalytically inactive mutant restored sensitivity to spermine. SKY1 disruption results in dramatically reduced uptake of spermine, spermidine, and putrescine. In addition to spermine tolerance, sky1Δ cells exhibit increased tolerance to lithium and sodium ions but somewhat increased sensitivity to osmotic shock. The observed halotolerance suggests potential regulatory interaction between the transport of polyamines and inorganic ions, as suggested in the case of the Ptk2p, a recently described regulator of polyamine transport. We demonstrate that these two kinases act in two different signaling pathways. While deletion or overexpression of SKY1 did not significantly affect Pma1p activity, the ability of overexpressed Sky1p, Ptk1p, and Ptk2p to increase sensitivity to LiCl depends on the integrity ofPPZ1 but not of ENA1.


2020 ◽  
Vol 86 (7) ◽  
Author(s):  
Rui Yao ◽  
Pei Zhou ◽  
Chengjin Wu ◽  
Liming Liu ◽  
Jing Wu

ABSTRACT In Saccharomyces cerevisiae, Y family DNA polymerase Rev1 is involved in the repair of DNA damage by translesion DNA synthesis (TLS). In the current study, to elucidate the role of Rev1 in oxidative stress-induced DNA damage in S. cerevisiae, REV1 was deleted and overexpressed; transcriptome analysis of these mutants along with the wild-type strain was performed to screen potential genes that could be associated with REV1 during response to DNA damage. When the yeast cells were treated with 2 mM H2O2, the deletion of REV1 resulted in a 1.5- and 2.8-fold decrease in the survival rate and mutation frequency, respectively, whereas overexpression of REV1 increased the survival rate and mutation frequency by 1.1- and 2.9-fold, respectively, compared to the survival rate and mutation frequency of the wild-type strain. Transcriptome and phenotypic analyses identified that Sml1 aggravated oxidative stress in the yeast cells by inhibiting the activity of Rev1. This inhibition was due to the physical interaction between the BRCA1 C terminus (BRCT) domain of Rev1 and amino acid residues 36 to 70 of Sml1; the cell survival rate and mutation frequency increased by 1.8- and 3.1-fold, respectively, when this interaction was blocked. We also found that Sml1 inhibited Rev1 phosphorylation under oxidative stress and that deletion of SML1 increased the phosphorylation of Rev1 by 46%, whereas overexpression of SML1 reduced phosphorylation of Rev1. Overall, these findings demonstrate that Sml1 could be a novel regulator that mediates Rev1 dephosphorylation to inhibit its activity during oxidative stress. IMPORTANCE Rev1 was critical for cell growth in S. cerevisiae, and the deletion of REV1 caused a severe growth defect in cells exposed to oxidative stress (2 mM H2O2). Furthermore, we found that Sml1 physically interacted with Rev1 and inhibited Rev1 phosphorylation, thereby inhibiting Rev1 DNA antioxidant activity. These findings indicate that Sml1 could be a novel regulator for Rev1 in response to DNA damage by oxidative stress.


2004 ◽  
Vol 15 (9) ◽  
pp. 4051-4063 ◽  
Author(s):  
Kaila L. Schollaert ◽  
Julie M. Poisson ◽  
Jennifer S. Searle ◽  
Jennifer A. Schwanekamp ◽  
Craig R. Tomlinson ◽  
...  

Replication blocks and DNA damage incurred during S phase activate the S-phase and intra-S-phase checkpoint responses, respectively, regulated by the Atrp and Chk1p checkpoint kinases in metazoans. In Saccharomyces cerevisiae, these checkpoints are regulated by the Atrp homologue Mec1p and the kinase Rad53p. A conserved role of these checkpoints is to block mitotic progression until DNA replication and repair are completed. In S. cerevisiae, these checkpoints include a transcriptional response regulated by the kinase Dun1p; however, dun1Δ cells are proficient for the S-phase-checkpoint-induced anaphase block. Yeast Chk1p kinase regulates the metaphase-to-anaphase transition in the DNA-damage checkpoint pathway via securin (Pds1p) phosphorylation. However, like Dun1p, yeast Chk1p is not required for the S-phase-checkpoint-induced anaphase block. Here we report that Chk1p has a role in the intra-S-phase checkpoint activated when yeast cells replicate their DNA in the presence of low concentrations of hydroxyurea (HU). Chk1p was modified and Pds1p was transiently phosphorylated in this response. Cells lacking Dun1p were dependent on Chk1p for survival in HU, and chk1Δ dun1Δ cells were defective in the recovery from replication interference caused by transient HU exposure. These studies establish a relationship between the S-phase and DNA-damage checkpoint pathways in S. cerevisiae and suggest that at least in some genetic backgrounds, the Chk1p/securin pathway is required for the recovery from stalled or collapsed replication forks.


2004 ◽  
Vol 70 (4) ◽  
pp. 1913-1922 ◽  
Author(s):  
Agustín Aranda ◽  
Marcel-lí del Olmo

ABSTRACT Acetaldehyde is a toxic compound produced by Saccharomyces cerevisiae cells under several growth conditions. The adverse effects of this molecule are important, as significant amounts accumulate inside the cells. By means of global gene expression analyses, we have detected the effects of acetaldehyde addition in the expression of about 400 genes. Repressed genes include many genes involved in cell cycle control, cell polarity, and the mitochondrial protein biosynthesis machinery. Increased expression is displayed in many stress response genes, as well as other families of genes, such as those encoding vitamin B1 biosynthesis machinery and proteins for aryl alcohol metabolism. The induction of genes involved in sulfur metabolism is dependent on Met4p and other well-known factors involved in the transcription of MET genes under nonrepressing conditions of sulfur metabolism. Moreover, the deletion of MET4 leads to increased acetaldehyde sensitivity. TPO genes encoding polyamine transporters are also induced by acetaldehyde; in this case, the regulation is dependent on the Haa1p transcription factor. In this paper, we discuss the connections between acetaldehyde and the processes affected by this compound in yeast cells with reference to the microarray data.


2019 ◽  
Vol 39 (12) ◽  
Author(s):  
Piotr H. Pawłowski ◽  
Paweł Szczęsny ◽  
Bożenna Rempoła ◽  
Anna Poznańska ◽  
Jarosław Poznański

Abstract The cytotoxic effect of 5-fluorouracil (5-FU) on yeast cells is thought to be mainly via a misincorporation of fluoropyrimidines into both RNA and DNA, not only DNA damage via inhibition of thymidylate synthase (TYMS) by fluorodeoxyuridine monophosphate (FdUMP). However, some studies on Saccharomyces cerevisiae show a drastic decrease in ATP concentration under oxidative stress, together with a decrease in concentration of other tri- and diphosphates. This raises a question if hydrolysis of 5-fluoro-2-deoxyuridine diphosphate (FdUDP) under oxidative stress could not lead to the presence of FdUMP and the activation of so-called ‘thymine-less death’ route. We attempted to answer this question with in silico modeling of 5-FU metabolic pathways, based on new experimental results, where the stages of intracellular metabolism of 5-FU in Saccharomyces cerevisiae were tracked by a combination of 19F and 31P NMR spectroscopic study. We have identified 5-FU, its nucleosides and nucleotides, and subsequent di- and/or triphosphates. Additionally, another wide 19F signal, assigned to fluorinated unstructured short RNA, has been also identified in the spectra. The concentration of individual metabolites was found to vary substantially within hours, however, the initial steady-state was preserved only for an hour, until the ATP concentration dropped by a half, which was monitored independently via 31P NMR spectra. After that, the catabolic process leading from triphosphates through monophosphates and nucleosides back to 5-FU was observed. These results imply careful design and interpretation of studies in 5-FU metabolism in yeast.


1998 ◽  
Vol 330 (2) ◽  
pp. 811-817 ◽  
Author(s):  
Shingo IZAWA ◽  
Keiko MAEDA ◽  
Takeo MIKI ◽  
Junichi MANO ◽  
Yoshiharu INOUE ◽  
...  

Glucose-6-phosphate dehydrogenase (G6PDH)-deficient cells of Saccharomyces cerevisiae showed increased susceptibility and were unable to induce adaptation to oxidative stress. Historically, mainly in human erythrocytes, it has been suggested and accepted that decreased cellular GSH, due to loss of the NADPH-dependent activity of glutathione reductase (GR), is responsible for the increased sensitivity to oxidative stress in G6PDH-deficient cells. In the present study we investigated whether the increased susceptibility and the inability to induce adaptation to H2O2 stress of G6PDH-deficient yeast is caused by incompleteness of glutathione recycling. We constructed G6PDH- and GR-deficient mutants and analysed their adaptive response to H2O2 stress. Although G6PDH-deficient cells contained comparable amounts of GSH and GR activity to wild-type cells, GSSG was not reduced efficiently, and intracellular GSSG levels and the ratio of GSSG to total glutathione (GSSG/tGSH) were higher in G6PDH-deficient cells than in wild-type. On the other hand, GR-deficient cells showed a susceptibility identical with that of wild-type cells and induced adaptation to H2O2 stress, even though the GSSG/tGSH ratio in GR-deficient cells was higher than in G6PDH-deficient cells. These results indicate that incompleteness of glutathione recycling alone is not sufficient to account for the increased sensitivity and inability to induce adaptation to H2O2 stress of G6PDH-deficient yeast cells. In S. cerevisiae, G6PDH appears to play other important roles in the adaptive response to H2O2 stress besides supplying NADPH to the GR reaction.


2009 ◽  
Vol 75 (22) ◽  
pp. 7205-7211 ◽  
Author(s):  
Ken Ukibe ◽  
Keisuke Hashida ◽  
Nobuyuki Yoshida ◽  
Hiroshi Takagi

ABSTRACT The red carotenoid astaxanthin possesses higher antioxidant activity than other carotenoids and has great commercial potential for use in the aquaculture, pharmaceutical, and food industries. In this study, we produced astaxanthin in the budding yeast Saccharomyces cerevisiae by introducing the genes involved in astaxanthin biosynthesis of carotenogenic microorganisms. In particular, expression of genes of the red yeast Xanthophyllomyces dendrorhous encoding phytoene desaturase (crtI product) and bifunctional phytoene synthase/lycopene cyclase (crtYB product) resulted in the accumulation of a small amount of β-carotene in S. cerevisiae. Overexpression of geranylgeranyl pyrophosphate (GGPP) synthase from S. cerevisiae (the BTS1 gene product) increased the intracellular β-carotene levels due to the accelerated conversion of farnesyl pyrophosphate to GGPP. Introduction of the X. dendrorhous crtS gene, encoding astaxanthin synthase, assumed to be the cytochrome P450 enzyme, did not lead to astaxanthin production. However, coexpression of CrtS with X. dendrorhous CrtR, a cytochrome P450 reductase, resulted in the accumulation of a small amount of astaxanthin. In addition, the β-carotene-producing yeast cells transformed by the bacterial genes crtW and crtZ, encoding β-carotene ketolase and hydroxylase, respectively, also accumulated astaxanthin and its intermediates, echinenone, canthaxanthin, and zeaxanthin. Interestingly, we found that these ketocarotenoids conferred oxidative stress tolerance on S. cerevisiae cells. This metabolic engineering has potential for overproduction of astaxanthin and breeding of novel oxidative stress-tolerant yeast strains.


Microbiology ◽  
2006 ◽  
Vol 152 (12) ◽  
pp. 3595-3605 ◽  
Author(s):  
Marta Marques ◽  
Dominik Mojzita ◽  
Maria A. Amorim ◽  
Teresa Almeida ◽  
Stefan Hohmann ◽  
...  

Turnover of damaged molecules is considered to play a key role in housekeeping of cells exposed to oxidative stress, and during the progress of ageing. In this work, global changes in the transcriptome were analysed during recovery of yeast cells after H2O2 stress. Regarding induced genes, those associated with protein fate were the most significantly over-represented. In addition to genes encoding subunits of the 20S proteasome, genes related to vacuolar proteolysis (PEP4 and LAP4), protein sorting into the vacuole, and vacuolar fusion were found to be induced. The upregulation of PEP4 gene expression was associated with an increase in Pep4p activity. The induction of genes related to proteolysis was correlated with an increased protein turnover after H2O2-induced oxidation. Furthermore, protein degradation and the removal of oxidized proteins decreased in Pep4p-deficient cells. Pep4p activity also increased during chronological ageing, and cells lacking Pep4p displayed a shortened lifespan associated with higher levels of carbonylated proteins. PEP4 overexpression prevented the accumulation of oxidized proteins, but did not increase lifespan. These results indicate that Pep4p is important for protein turnover after oxidative damage; however, increased removal of oxidized proteins is not sufficient to enhance lifespan.


Sign in / Sign up

Export Citation Format

Share Document