scholarly journals Exposure of Saccharomyces cerevisiae to Acetaldehyde Induces Sulfur Amino Acid Metabolism and Polyamine Transporter Genes, Which Depend on Met4p and Haa1p Transcription Factors, Respectively

2004 ◽  
Vol 70 (4) ◽  
pp. 1913-1922 ◽  
Author(s):  
Agustín Aranda ◽  
Marcel-lí del Olmo

ABSTRACT Acetaldehyde is a toxic compound produced by Saccharomyces cerevisiae cells under several growth conditions. The adverse effects of this molecule are important, as significant amounts accumulate inside the cells. By means of global gene expression analyses, we have detected the effects of acetaldehyde addition in the expression of about 400 genes. Repressed genes include many genes involved in cell cycle control, cell polarity, and the mitochondrial protein biosynthesis machinery. Increased expression is displayed in many stress response genes, as well as other families of genes, such as those encoding vitamin B1 biosynthesis machinery and proteins for aryl alcohol metabolism. The induction of genes involved in sulfur metabolism is dependent on Met4p and other well-known factors involved in the transcription of MET genes under nonrepressing conditions of sulfur metabolism. Moreover, the deletion of MET4 leads to increased acetaldehyde sensitivity. TPO genes encoding polyamine transporters are also induced by acetaldehyde; in this case, the regulation is dependent on the Haa1p transcription factor. In this paper, we discuss the connections between acetaldehyde and the processes affected by this compound in yeast cells with reference to the microarray data.

1982 ◽  
Vol 2 (4) ◽  
pp. 361-368 ◽  
Author(s):  
A E Wheals

By using time-lapse photomicroscopy, the individual cycle times and sizes at bud emergence were measured for a population of saccharomyces cerevisiae cells growing exponentially under balanced growth conditions in a specially constructed filming slide. There was extensive variability in both parameters for daughter and parent cells. The data on 162 pairs of siblings were analyzed for agreement with the predictions of the transition probability hypothesis and the critical-size hypothesis of yeast cell proliferation and also with a model incorporating both of these hypotheses in tandem. None of the models accounted for all of the experimental data, but two models did give good agreement to all of the data. The wobbly tandem model proposes that cells need to attain a critical size, which is very variable, enabling them to enter a start state from which they exit with first order kinetics. The sloppy size control model suggests that cells have an increasing probability per unit time of traversing start as they increase in size, reaching a high plateau value which is less than one. Both models predict that the kinetics of entry into the cell division sequence will strongly depend on variability in birth size and thus will be quite different for daughters and parents of the asymmetrically dividing yeast cells. Mechanisms underlying these models are discussed.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1195
Author(s):  
William T. Scott ◽  
Eddy J. Smid ◽  
Richard A. Notebaart ◽  
David E. Block

One approach for elucidating strain-to-strain metabolic differences is the use of genome-scale metabolic models (GSMMs). To date GSMMs have not focused on the industrially important area of flavor production and, as such; do not cover all the pathways relevant to flavor formation in yeast. Moreover, current models for Saccharomyces cerevisiae generally focus on carbon-limited and/or aerobic systems, which is not pertinent to enological conditions. Here, we curate a GSMM (iWS902) to expand on the existing Ehrlich pathway and ester formation pathways central to aroma formation in industrial winemaking, in addition to the existing sulfur metabolism and medium-chain fatty acid (MCFA) pathways that also contribute to production of sensory impact molecules. After validating the model using experimental data, we predict key differences in metabolism for a strain (EC 1118) in two distinct growth conditions, including differences for aroma impact molecules such as acetic acid, tryptophol, and hydrogen sulfide. Additionally, we propose novel targets for metabolic engineering for aroma profile modifications employing flux variability analysis with the expanded GSMM. The model provides mechanistic insights into the key metabolic pathways underlying aroma formation during alcoholic fermentation and provides a potential framework to contribute to new strategies to optimize the aroma of wines.


1992 ◽  
Vol 3 (9) ◽  
pp. 1025-1035 ◽  
Author(s):  
K Madden ◽  
M Snyder

Many eucaryotic cell types exhibit polarized cell growth and polarized cell division at nonrandom sites. The sites of polarized growth were investigated in G1 arrested haploid Saccharomyces cerevisiae cells. When yeast cells are arrested during G1 either by treatment with alpha-factor or by shifting temperature-sensitive cdc28-1 cells to the restrictive temperature, the cells form a projection. Staining with Calcofluor reveals that in both cases the projection usually forms at axial sites (i.e., next to the previous bud scar); these are the same sites where bud formation is expected to occur. These results indicate that sites of polarized growth are specified before the end of G1. Sites of polarized growth can be influenced by external conditions. Cells grown to stationary phase and diluted into fresh medium preferentially select sites for polarized growth opposite the previous bud scar (i.e., distal sites). Incubation of cells in a mating mixture results in projection formation at nonaxial sites: presumably cells form projections toward their mating partner. These observations have important implications in understanding three aspects of cell polarity in yeast: 1) how yeast cell shape is influenced by growth conditions 2) how sites of polarized growth are chosen, and 3) the pathway by which polarity is affected and redirected during the mating process.


2021 ◽  
Vol 22 (9) ◽  
pp. 4607
Author(s):  
Chang-Lin Chen ◽  
Ying-Chieh Chen ◽  
Wei-Ling Huang ◽  
Steven Lin ◽  
Rimantas Daugelavičius ◽  
...  

Mitochondria are dynamic organelles as they continuously undergo fission and fusion. These dynamic processes conduct not only mitochondrial network morphology but also activity regulation and quality control. Saccharomyces cerevisiae has a remarkable capacity to resist stress from dehydration/rehydration. Although mitochondria are noted for their role in desiccation tolerance, the mechanisms underlying these processes remains obscure. Here, we report that yeast cells that went through stationary growth phase have a better survival rate after dehydration/rehydration. Dynamic defective yeast cells with reduced mitochondrial genome cannot maintain the mitochondrial activity and survival rate of wild type cells. Our results demonstrate that yeast cells balance mitochondrial fusion and fission according to growth conditions, and the ability to adjust dynamic behavior aids the dehydration resistance by preserving mitochondria.


1992 ◽  
Vol 12 (5) ◽  
pp. 2091-2099 ◽  
Author(s):  
T Munder ◽  
P Fürst

Genetic data suggest that the yeast cell cycle control gene CDC25 is an upstream regulator of RAS2. We have been able to show for the first time that the guanine nucleotide exchange proteins Cdc25 and Sdc25 from Saccharomyces cerevisiae bind directly to their targets Ras1 and Ras2 in vivo. Using the characteristics of the yeast Ace1 transcriptional activator to probe for protein-protein interaction, we found that the CDC25 gene product binds specifically to wild-type Ras2 but not to the mutated Ras2Val-19 and Ras2 delta Val-19 proteins. The binding properties of Cdc25 to Ras2 were strongly diminished in yeast cells expressing an inactive Ira1 protein, which normally acts as a negative regulator of Ras activity. On the basis of these data, we propose that the ability of Cdc25 to interact with Ras2 proteins is strongly dependent on the activation state of Ras2. Cdc25 binds predominantly to the catalytically inactive GDP-bound form of Ras2, whereas a conformational change of Ras2 to its activated GTP-bound state results in its loss of binding affinity to Cdc25.


2006 ◽  
Vol 72 (1) ◽  
pp. 836-847 ◽  
Author(s):  
Aurora Zuzuarregui ◽  
Lucía Monteoliva ◽  
Concha Gil ◽  
Marcel·lí del Olmo

ABSTRACT Throughout alcoholic fermentation, Saccharomyces cerevisiae cells have to cope with several stress conditions that could affect their growth and viability. In addition, the metabolic activity of yeast cells during this process leads to the production of secondary compounds that contribute to the organoleptic properties of the resulting wine. Commercial strains have been selected during the last decades for inoculation into the must to carry out the alcoholic fermentation on the basis of physiological traits, but little is known about the molecular basis of the fermentative behavior of these strains. In this work, we present the first transcriptomic and proteomic comparison between two commercial strains with different fermentative behaviors. Our results indicate that some physiological differences between the fermentative behaviors of these two strains could be related to differences in the mRNA and protein profiles. In this sense, at the level of gene expression, we have found differences related to carbohydrate metabolism, nitrogen catabolite repression, and response to stimuli, among other factors. In addition, we have detected a relative increase in the abundance of proteins involved in stress responses (the heat shock protein Hsp26p, for instance) and in fermentation (in particular, the major cytosolic aldehyde dehydrogenase Ald6p) in the strain with better behavior during vinification. Moreover, in the case of the other strain, higher levels of enzymes required for sulfur metabolism (Cys4p, Hom6p, and Met22p) are observed, which could be related to the production of particular organoleptic compounds or to detoxification processes.


2006 ◽  
Vol 173 (5) ◽  
pp. 651-658 ◽  
Author(s):  
Hiromi Sesaki ◽  
Cory D. Dunn ◽  
Miho Iijima ◽  
Kelly A. Shepard ◽  
Michael P. Yaffe ◽  
...  

Mgm1p is a conserved dynamin-related GTPase required for fusion, morphology, inheritance, and the genome maintenance of mitochondria in Saccharomyces cerevisiae. Mgm1p undergoes unconventional processing to produce two functional isoforms by alternative topogenesis. Alternative topogenesis involves bifurcate sorting in the inner membrane and intramembrane proteolysis by the rhomboid protease Pcp1p. Here, we identify Ups1p, a novel mitochondrial protein required for the unique processing of Mgm1p and for normal mitochondrial shape. Our results demonstrate that Ups1p regulates the sorting of Mgm1p in the inner membrane. Consistent with its function, Ups1p is peripherally associated with the inner membrane in the intermembrane space. Moreover, the human homologue of Ups1p, PRELI, can fully replace Ups1p in yeast cells. Together, our findings provide a conserved mechanism for the alternative topogenesis of Mgm1p and control of mitochondrial morphology.


2004 ◽  
Vol 3 (6) ◽  
pp. 1381-1390 ◽  
Author(s):  
Marcus Krantz ◽  
Bodil Nordlander ◽  
Hadi Valadi ◽  
Mikael Johansson ◽  
Lena Gustafsson ◽  
...  

ABSTRACT Yeast cells adapt to hyperosmotic shock by accumulating glycerol and altering expression of hundreds of genes. This transcriptional response of Saccharomyces cerevisiae to osmotic shock encompasses genes whose products are implicated in protection from oxidative damage. We addressed the question of whether osmotic shock caused oxidative stress. Osmotic shock did not result in the generation of detectable levels of reactive oxygen species (ROS). To preclude any generation of ROS, osmotic shock treatments were performed in anaerobic cultures. Global gene expression response profiles were compared by employing a novel two-dimensional cluster analysis. The transcriptional profiles following osmotic shock under anaerobic and aerobic conditions were qualitatively very similar. In particular, it appeared that expression of the oxidative stress genes was stimulated upon osmotic shock even if there was no apparent need for their function. Interestingly, cells adapted to osmotic shock much more rapidly under anaerobiosis, and the signaling as well as the transcriptional response was clearly attenuated under these conditions. This more rapid adaptation is due to an enhanced glycerol production capacity in anaerobic cells, which is caused by the need for glycerol production in redox balancing. Artificially enhanced glycerol production led to an attenuated response even under aerobic conditions. These observations demonstrate the crucial role of glycerol accumulation and turgor recovery in determining the period of osmotic shock-induced signaling and the profile of cellular adaptation to osmotic shock.


1982 ◽  
Vol 2 (4) ◽  
pp. 361-368
Author(s):  
A E Wheals

By using time-lapse photomicroscopy, the individual cycle times and sizes at bud emergence were measured for a population of saccharomyces cerevisiae cells growing exponentially under balanced growth conditions in a specially constructed filming slide. There was extensive variability in both parameters for daughter and parent cells. The data on 162 pairs of siblings were analyzed for agreement with the predictions of the transition probability hypothesis and the critical-size hypothesis of yeast cell proliferation and also with a model incorporating both of these hypotheses in tandem. None of the models accounted for all of the experimental data, but two models did give good agreement to all of the data. The wobbly tandem model proposes that cells need to attain a critical size, which is very variable, enabling them to enter a start state from which they exit with first order kinetics. The sloppy size control model suggests that cells have an increasing probability per unit time of traversing start as they increase in size, reaching a high plateau value which is less than one. Both models predict that the kinetics of entry into the cell division sequence will strongly depend on variability in birth size and thus will be quite different for daughters and parents of the asymmetrically dividing yeast cells. Mechanisms underlying these models are discussed.


1992 ◽  
Vol 12 (5) ◽  
pp. 2091-2099
Author(s):  
T Munder ◽  
P Fürst

Genetic data suggest that the yeast cell cycle control gene CDC25 is an upstream regulator of RAS2. We have been able to show for the first time that the guanine nucleotide exchange proteins Cdc25 and Sdc25 from Saccharomyces cerevisiae bind directly to their targets Ras1 and Ras2 in vivo. Using the characteristics of the yeast Ace1 transcriptional activator to probe for protein-protein interaction, we found that the CDC25 gene product binds specifically to wild-type Ras2 but not to the mutated Ras2Val-19 and Ras2 delta Val-19 proteins. The binding properties of Cdc25 to Ras2 were strongly diminished in yeast cells expressing an inactive Ira1 protein, which normally acts as a negative regulator of Ras activity. On the basis of these data, we propose that the ability of Cdc25 to interact with Ras2 proteins is strongly dependent on the activation state of Ras2. Cdc25 binds predominantly to the catalytically inactive GDP-bound form of Ras2, whereas a conformational change of Ras2 to its activated GTP-bound state results in its loss of binding affinity to Cdc25.


Sign in / Sign up

Export Citation Format

Share Document