scholarly journals Changes in the Molecular and Functional Phenotype of Bovine Monocytes during Theileria parva Infection

2019 ◽  
Vol 87 (12) ◽  
Author(s):  
Reginaldo G. Bastos ◽  
Kelly Sears ◽  
Kelcey D. Dinkel ◽  
Donald P. Knowles ◽  
Lindsay M. Fry

ABSTRACT Theileria parva is the causative agent of East Coast fever (ECF), a tick-borne disease that kills over a million cattle each year in sub-Saharan Africa. Immune protection against T. parva involves a CD8+ cytotoxic T cell response to parasite-infected cells. However, there is currently a paucity of knowledge regarding the role played by innate immune cells in ECF pathogenesis and T. parva control. Here, we demonstrate an increase in intermediate monocytes (CD14++ CD16+) with a concomitant decrease in the classical (CD14++ CD16−) and nonclassical (CD14+ CD16+) subsets at 12 days postinfection (dpi) during lethal infection but not during nonlethal T. parva infection. Ex vivo analyses of monocytes demonstrated upregulation of interleukin-1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) mRNA and increased nitric oxide production during T. parva lethal infection compared to nonlethal infection at 10 dpi. Interestingly, no significant differences in peripheral blood parasite loads were observed between lethally and nonlethally infected animals at 12 dpi. In vitro stimulation with T. parva schizont-infected cells or Escherichia coli lipopolysaccharide (LPS) resulted in significant upregulation of IL-1β production by monocytes from lethally infected cattle compared to those from nonlethally infected animals. Strikingly, monocytes from lethally infected animals produced significant amounts of IL-10 mRNA after stimulation with T. parva schizont-infected cells. In conclusion, we demonstrate that T. parva infection leads to alterations in the molecular and functional phenotypes of bovine monocytes. Importantly, since these changes primarily occur in lethal infection, they can serve as biomarkers for ECF progression and severity, thereby aiding in the standardization of protection assessment for T. parva candidate vaccines.

2021 ◽  
Author(s):  
Shan Goh ◽  
Jeannine Kolakowski ◽  
Angela Holder ◽  
Mark Pfuhl ◽  
Daniel Ngugi ◽  
...  

AbstractEast Coast Fever (ECF), caused by the tick-borne apicomplexan parasite Theileria parva, remains one of the most important livestock diseases in sub-Saharan Africa with more than 1 million cattle dying from infection every year. Disease prevention relies on the so-called “Infection and Treatment Method” (ITM), which is costly, complex, laborious, difficult to standardise on a commercial scale and results in a parasite strain specific, MHC class I restricted cytotoxic T cell response. We therefore attempted to develop a safe, affordable, stable, orally applicable and potent subunit vaccine for ECF using five different T. parva schizont antigens (Tp1, Tp2, Tp9, Tp10 and N36) and Saccharomyces cerevisiae as an expression platform. Full-length native Tp2 and Tp9 as well as fragments of native Tp1 were successfully expressed on the surface of S. cerevisiae. In vitro analyses highlighted that recombinant yeast expressing Tp2 can elicit IFNy responses using PBMCs from ITM-animals, while Tp2 and Tp9 induced IFNy responses from enriched bovine CD8+ T cells. A subsequent in vivo study showed that oral administration of heat-inactivated, freeze-dried yeast stably expressing Tp2 increased total murine serum IgG over time, but more importantly, induce Tp2 specific serum IgG antibodies in individual mice compared to the control group. While these results will require subsequent experiments to verify induction of protection in neonatal calves, our data indicates that oral application of yeast expressing Theileria antigens could provide an affordable and easy vaccination platform for sub-Saharan Africa. Evaluation of antigen specific cellular immune responses, especially cytotoxic CD8+ T cell immunity in cows will further contribute to the development of a yeast-based vaccine for ECF.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shan Goh ◽  
Jeannine Kolakowski ◽  
Angela Holder ◽  
Mark Pfuhl ◽  
Daniel Ngugi ◽  
...  

East Coast Fever (ECF), caused by the tick-borne apicomplexan parasite Theileria parva, remains one of the most important livestock diseases in sub-Saharan Africa with more than 1 million cattle dying from infection every year. Disease prevention relies on the so-called “Infection and Treatment Method” (ITM), which is costly, complex, laborious, difficult to standardise on a commercial scale and results in a parasite strain-specific, MHC class I-restricted cytotoxic T cell response. We therefore attempted to develop a safe, affordable, stable, orally applicable and potent subunit vaccine for ECF using five different T. parva schizont antigens (Tp1, Tp2, Tp9, Tp10 and N36) and Saccharomyces cerevisiae as an expression platform. Full-length Tp2 and Tp9 as well as fragments of Tp1 were successfully expressed on the surface of S. cerevisiae. In vitro analyses highlighted that recombinant yeast expressing Tp2 can elicit IFNγ responses using PBMCs from ITM-immunized calves, while Tp2 and Tp9 induced IFNγ responses from enriched bovine CD8+ T cells. A subsequent in vivo study showed that oral administration of heat-inactivated, freeze-dried yeast stably expressing Tp2 increased total murine serum IgG over time, but more importantly, induced Tp2-specific serum IgG antibodies in individual mice compared to the control group. While these results will require subsequent experiments to verify induction of protection in neonatal calves, our data indicates that oral application of yeast expressing Theileria antigens could provide an affordable and easy vaccination platform for sub-Saharan Africa. Evaluation of antigen-specific cellular immune responses, especially cytotoxic CD8+ T cell immunity in cattle will further contribute to the development of a yeast-based vaccine for ECF.


2021 ◽  
Vol 9 (6) ◽  
pp. e002269
Author(s):  
Shota Aoyama ◽  
Ryosuke Nakagawa ◽  
Satoshi Nemoto ◽  
Patricio Perez-Villarroel ◽  
James J Mulé ◽  
...  

BackgroundThe temporal response to checkpoint blockade (CB) is incompletely understood. Here, we profiled the tumor infiltrating lymphocyte (TIL) landscape in response to combination checkpoint blockade at two distinct timepoints of solid tumor growth.MethodsC57BL/6 mice bearing subcutaneous MC38 tumors were treated with anti-PD-1 and/or anti-CTLA-4 antibodies. At 11 or 21 days, TIL phenotype and effector function were analyzed in excised tumor digests using high parameter flow cytometry. The contributions of major TIL populations toward overall response were then assessed using ex vivo cytotoxicity and in vivo tumor growth assays.ResultsThe distribution and effector function among 37 distinct TIL populations shifted dramatically between early and late MC38 growth. At 11 days, the immune response was dominated by Tumor necrosis factor alpha (TNFα)-producing NKT, representing over half of all TIL. These were accompanied by modest frequencies of natural killer (NK), CD4+, or CD8+ T cells, producing low levels of IFN-γ. At 21 days, NKT populations were reduced to a combined 20% of TIL, giving way to increased NK, CD4+, and CD8+ T cells, with increased IFN-γ production. Treatment with CB accelerated this switch. At day 11, CB reduced NKT to less than 20% of all TIL, downregulated TNFα across NKT and CD4+ T cell populations, increased CD4+ and CD8+ TIL frequencies, and significantly upregulated IFN-γ production. Degranulation was largely associated with NK and NKT TIL. Blockade of H-2kb and/or CD1d during ex vivo cytotoxicity assays revealed NKT has limited direct cytotoxicity against parent MC38. However, forced CD1d overexpression in MC38 cells significantly diminished tumor growth, suggesting NKT TIL exerts indirect control over MC38 growth.ConclusionsDespite an indirect benefit of early NKT activity, CB accelerates a switch from TNFα, NKT-driven immune response toward an IFN-γ driven CD4+/CD8+ T cell response in MC38 tumors. These results uncover a novel NKT/T cell switch that may be a key feature of CB response in CD1d+ tumors.


2018 ◽  
Vol 86 (5) ◽  
Author(s):  
Wayne Nishio Ayre ◽  
Genevieve Melling ◽  
Camille Cuveillier ◽  
Madhan Natarajan ◽  
Jessica L. Roberts ◽  
...  

ABSTRACTThis study investigated the host response to a polymicrobial pulpal infection consisting ofStreptococcus anginosusandEnterococcus faecalis, bacteria commonly implicated in dental abscesses and endodontic failure, using a validatedex vivorat tooth model. Tooth slices were inoculated with planktonic cultures ofS. anginosusorE. faecalisalone or in coculture atS. anginosus/E. faecalisratios of 50:50 and 90:10. Attachment was semiquantified by measuring the area covered by fluorescently labeled bacteria. Host response was established by viable histological cell counts, and inflammatory response was measured using reverse transcription-quantitative PCR (RT-qPCR) and immunohistochemistry. A significant reduction in cell viability was observed for single and polymicrobial infections, with no significant differences between infection types (∼2,000 cells/mm2for infected pulps compared to ∼4,000 cells/mm2for uninfected pulps).E. faecalisdemonstrated significantly higher levels of attachment (6.5%) thanS. anginosusalone (2.3%) and mixed-species infections (3.4% for 50:50 and 2.3% for 90:10), with a remarkable affinity for the pulpal vasculature. Infections withE. faecalisdemonstrated the greatest increase in tumor necrosis factor alpha (TNF-α) (47.1-fold forE. faecalis, 14.6-fold forS. anginosus, 60.1-fold for 50:50, and 25.0-fold for 90:10) and interleukin 1β (IL-1β) expression (54.8-fold forE. faecalis, 8.8-fold forS. anginosus, 54.5-fold for 50:50, and 39.9-fold for 90:10) compared to uninfected samples. Immunohistochemistry confirmed this, with the majority of inflammation localized to the pulpal vasculature and odontoblast regions. Interestingly,E. faecalissupernatant and heat-killedE. faecalistreatments were unable to induce the same inflammatory response, suggestingE. faecalispathogenicity in pulpitis is linked to its greater ability to attach to the pulpal vasculature.


Blood ◽  
2000 ◽  
Vol 96 (4) ◽  
pp. 1327-1333 ◽  
Author(s):  
Andreas Gruber ◽  
June Kan-Mitchell ◽  
Kelli L. Kuhen ◽  
Tetsu Mukai ◽  
Flossie Wong-Staal

Abstract Dendritic cells (DCs) genetically modified to continually express and present antigens may be potent physiologic adjuvants for induction of prophylactic or therapeutic immunity. We have previously shown that an env and nef deleted HIV-1 vector (HIV-1ΔEN) pseudotyped with VSV-G transduced monocyte-derived macrophages as well as CD34+ precursors of DCs. Here we extended these findings with HIV-1ΔEN to highly differentiated human DCs derived in culture from circulating monocytes (DCs). In addition, a new vector derived from HIV-1ΔEN but further deleted in its remaining accessory genes vif, vpr, and vpu(HIV-1ΔEN V3) was also tested. Both vectors efficiently transduced DCs. Transduction of DCs did not significantly alter their viability or their immunophenotype when compared with untransduced DCs. Furthermore, the phagocytic potential of immature DCs, as well as their ability to differentiate into mature DCs capable of stimulating T-cell proliferation, was not affected. Finally, DCs transduced by the HIV-1ΔEN vector were able to elicit a primary antiviral cytotoxic T-cell response in autologous CD8 T cells. These results suggest that HIV-1–based vectors expressing viral antigens may be useful for in vivo active immunization as well as ex vivo priming of cytotoxic T cells for adoptive T-cell therapy.


2015 ◽  
Vol 83 (12) ◽  
pp. 4861-4870 ◽  
Author(s):  
Carlos Chacón-Díaz ◽  
Pamela Altamirano-Silva ◽  
Gabriela González-Espinoza ◽  
María-Concepción Medina ◽  
Alejandro Alfaro-Alarcón ◽  
...  

Canine brucellosis caused byBrucella canisis a disease of dogs and a zoonotic risk.B. canisharbors most of the virulence determinants defined for the genus, but its pathogenic strategy remains unclear since it has not been demonstrated that this natural rough bacterium is an intracellular pathogen. Studies ofB. canisoutbreaks in kennel facilities indicated that infected dogs displaying clinical signs did not present hematological alterations. A virulentB. canisstrain isolated from those outbreaks readily replicated in different organs of mice for a protracted period. However, the levels of tumor necrosis factor alpha, interleukin-6 (IL-6), and IL-12 in serum were close to background levels. Furthermore,B. canisinduced lower levels of gamma interferon, less inflammation of the spleen, and a reduced number of granulomas in the liver in mice than didB. abortus. When the interaction ofB. caniswith cells was studiedex vivo, two patterns were observed, a predominant scattered cell-associated pattern of nonviable bacteria and an infrequent intracellular replicative pattern of viable bacteria in a perinuclear location. The second pattern, responsible for the increase in intracellular multiplication, was dependent on the type IV secretion system VirB and was seen only if the inoculum used for cell infections was in early exponential phase. Intracellular replicativeB. canisfollowed an intracellular trafficking route undistinguishable from that ofB. abortus. AlthoughB. canisinduces a lower proinflammatory response and has a stealthier replication cycle, it still displays the pathogenic properties of the genus and the ability to persist in infected organs based on the ability to multiply intracellularly.


1977 ◽  
Vol 146 (3) ◽  
pp. 690-697 ◽  
Author(s):  
W E Biddison ◽  
P C Doherty ◽  
R G Webster

Antisera to the type-specific internal influenza virus matrix (M) protein of a type A influenza virus were produced in goats. In the presence of complement, anti-M serum was cytotoxic for target cells which were infected with a variety of serologically distinct type A influenza viruses, but did not react with type B influenza virus-infected cells. Absorption experiments indicated that anti-M serum detected a common antigen(s) on the surface of type A-infected cells. This serological cross-reactivity parallels the cross-reactivity observed for the cytotoxic T-cell response to type A viruses.


2011 ◽  
Vol 80 (1) ◽  
pp. 410-417 ◽  
Author(s):  
Melissa A. Gessner ◽  
Jessica L. Werner ◽  
Lauren M. Lilly ◽  
Michael P. Nelson ◽  
Allison E. Metz ◽  
...  

ABSTRACTWe have previously reported that mice deficient in the beta-glucan receptor Dectin-1 displayed increased susceptibility toAspergillus fumigatuslung infection in the presence of lower interleukin 23 (IL-23) and IL-17A production in the lungs and have reported a role for IL-17A in lung defense. As IL-23 is also thought to control the production of IL-22, we examined the role of Dectin-1 in IL-22 production, as well as the role of IL-22 in innate host defense againstA. fumigatus. Here, we show that Dectin-1-deficient mice demonstrated significantly reduced levels of IL-22 in the lungs early afterA. fumigatuschallenge. Culturing cells from enzymatic lung digestsex vivofurther demonstrated Dectin-1-dependent IL-22 production. IL-22 production was additionally found to be independent of IL-1β, IL-6, or IL-18 but required IL-23. The addition of recombinant IL-23 augmented IL-22 production in wild-type (WT) lung cells and rescued IL-22 production by lung cells from Dectin-1-deficient mice.In vivoneutralization of IL-22 in the lungs of WT mice resulted in impairedA. fumigatuslung clearance. Moreover, mice deficient in IL-22 also demonstrated a higher lung fungal burden afterA. fumigatuschallenge in the presence of impaired IL-1α, tumor necrosis factor alpha (TNF-α), CCL3/MIP-1α, and CCL4/MIP-1β production and lower neutrophil recruitment, yet intact IL-17A production. We further show that lung lavage fluid collected from bothA. fumigatus-challenged Dectin-1-deficient and IL-22-deficient mice had compromised anti-fungal activity againstA. fumigatus in vitro. Although lipocalin 2 production was observed to be Dectin-1 and IL-22 dependent, lipocalin 2-deficient mice did not demonstrate impairedA. fumigatusclearance. Moreover, lungS100a8,S100a9, andReg3gmRNA expression was not lower in either Dectin-1-deficient or IL-22-deficient mice. Collectively, our results indicate that early innate lung defense againstA. fumigatusis mediated by Dectin-1-dependent IL-22 production.


2016 ◽  
Vol 23 (4) ◽  
pp. 282-293 ◽  
Author(s):  
Vijaya Satchidanandam ◽  
Naveen Kumar ◽  
Sunetra Biswas ◽  
Rajiv S. Jumani ◽  
Chandni Jain ◽  
...  

ABSTRACTWe previously reported that Rv1860 protein fromMycobacterium tuberculosisstimulated CD4+and CD8+T cells secreting gamma interferon (IFN-γ) in healthy purified protein derivative (PPD)-positive individuals and protected guinea pigs immunized with a DNA vaccine and a recombinant poxvirus expressing Rv1860 from a challenge with virulentM. tuberculosis. We now show Rv1860-specific polyfunctional T (PFT) cell responses in the blood of healthy latentlyM. tuberculosis-infected individuals dominated by CD8+T cells, using a panel of 32 overlapping peptides spanning the length of Rv1860. Multiple subsets of CD8+PFT cells were significantly more numerous in healthy latently infected volunteers (HV) than in tuberculosis (TB) patients (PAT). The responses of peripheral blood mononuclear cells (PBMC) from PAT to the peptides of Rv1860 were dominated by tumor necrosis factor alpha (TNF-α) and interleukin-10 (IL-10) secretions, the former coming predominantly from non-T cell sources. Notably, the pattern of the T cell response to Rv1860 was distinctly different from those of the widely studiedM. tuberculosisantigens ESAT-6, CFP-10, Ag85A, and Ag85B, which elicited CD4+T cell-dominated responses as previously reported in other cohorts. We further identified a peptide spanning amino acids 21 to 39 of the Rv1860 protein with the potential to distinguish latent TB infection from disease due to its ability to stimulate differential cytokine signatures in HV and PAT. We suggest that a TB vaccine carrying these and other CD8+T-cell-stimulating antigens has the potential to prevent progression of latentM. tuberculosisinfection to TB disease.


Blood ◽  
2000 ◽  
Vol 96 (4) ◽  
pp. 1327-1333 ◽  
Author(s):  
Andreas Gruber ◽  
June Kan-Mitchell ◽  
Kelli L. Kuhen ◽  
Tetsu Mukai ◽  
Flossie Wong-Staal

Dendritic cells (DCs) genetically modified to continually express and present antigens may be potent physiologic adjuvants for induction of prophylactic or therapeutic immunity. We have previously shown that an env and nef deleted HIV-1 vector (HIV-1ΔEN) pseudotyped with VSV-G transduced monocyte-derived macrophages as well as CD34+ precursors of DCs. Here we extended these findings with HIV-1ΔEN to highly differentiated human DCs derived in culture from circulating monocytes (DCs). In addition, a new vector derived from HIV-1ΔEN but further deleted in its remaining accessory genes vif, vpr, and vpu(HIV-1ΔEN V3) was also tested. Both vectors efficiently transduced DCs. Transduction of DCs did not significantly alter their viability or their immunophenotype when compared with untransduced DCs. Furthermore, the phagocytic potential of immature DCs, as well as their ability to differentiate into mature DCs capable of stimulating T-cell proliferation, was not affected. Finally, DCs transduced by the HIV-1ΔEN vector were able to elicit a primary antiviral cytotoxic T-cell response in autologous CD8 T cells. These results suggest that HIV-1–based vectors expressing viral antigens may be useful for in vivo active immunization as well as ex vivo priming of cytotoxic T cells for adoptive T-cell therapy.


Sign in / Sign up

Export Citation Format

Share Document