scholarly journals Genetic Determinants of Intrinsic Colistin Tolerance in Acinetobacter baumannii

2012 ◽  
Vol 81 (2) ◽  
pp. 542-551 ◽  
Author(s):  
M. Indriati Hood ◽  
Kyle W. Becker ◽  
Christelle M. Roux ◽  
Paul M. Dunman ◽  
Eric P. Skaar

ABSTRACTAcinetobacter baumanniiis a leading cause of multidrug-resistant infections worldwide. This organism poses a particular challenge due to its ability to acquire resistance to new antibiotics through adaptation or mutation. This study was undertaken to determine the mechanisms governing the adaptability ofA. baumanniito the antibiotic colistin. Screening of a transposon mutant library identified over 30 genes involved in inducible colistin resistance inA. baumannii. One of the genes identified waslpsB, which encodes a glycosyltransferase involved in lipopolysaccharide (LPS) synthesis. We demonstrate that loss of LpsB function results in increased sensitivity to both colistin and cationic antimicrobial peptides of the innate immune system. Moreover, LpsB is critical for pathogenesis in a pulmonary model of infection. Taken together, these data define bacterial processes required for intrinsic colistin tolerance inA. baumanniiand underscore the importance of outer membrane structure in both antibiotic resistance and the pathogenesis ofA. baumannii.

mBio ◽  
2013 ◽  
Vol 4 (3) ◽  
Author(s):  
Brooke A. Napier ◽  
Eileen M. Burd ◽  
Sarah W. Satola ◽  
Stephanie M. Cagle ◽  
Susan M. Ray ◽  
...  

ABSTRACTThe alarming rise in antibiotic resistance has led to an increase in patient mortality and health care costs. This problem is compounded by the absence of new antibiotics close to regulatory approval.Acinetobacter baumanniiis a human pathogen that causes infections primarily in patients in intensive care units (ICUs) and is highly antibiotic resistant. Colistin is one of the last-line antibiotics for treatingA. baumanniiinfections; however, colistin-resistant strains are becoming increasingly common. This cationic antibiotic attacks negatively charged bacterial membranes in a manner similar to that seen with cationic antimicrobials of the innate immune system. We therefore set out to determine if the increasing use of colistin, and emergence of colistin-resistant strains, is concomitant with the generation of cross-resistance to host cationic antimicrobials. We found that there is indeed a positive correlation between resistance to colistin and resistance to the host antimicrobials LL-37 and lysozyme among clinical isolates. Importantly, isolates obtained before and after treatment of individual patients demonstrated that colistin use correlated with increased resistance to cationic host antimicrobials. These data reveal the overlooked risk of inducing cross-resistance to host antimicrobials when treating patients with colistin as a last-line antibiotic.IMPORTANCEIncreased use of the cationic antibiotic colistin to treat multidrug-resistantAcinetobacter baumanniihas led to the development of colistin-resistant strains. Here we report that treatment of patients with colistin can induce not only increased resistance to colistin but also resistance to host cationic antimicrobials. This worrisome finding likely represents an example of a broader trend observed in other bacteria against which colistin is used therapeutically such asPseudomonas aeruginosaandKlebsiella pneumoniae. Furthermore, these data suggest that the possible future use of an array of cationic antimicrobial peptides in development as therapeutics may have unintended negative consequences, eventually leading to the generation of hypervirulent strains that are resistant to innate host defenses. The potential for the induction of cross-resistance to innate immune antimicrobials should be considered during the development of new therapeutics.


mSphere ◽  
2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Bingbing Sun ◽  
Haiyan Liu ◽  
Yu Jiang ◽  
Lei Shao ◽  
Sheng Yang ◽  
...  

ABSTRACT Colistin is used as the “last resort” to treat infections caused by multidrug-resistant Acinetobacter baumannii, which is at the top of the World Health Organization’s list of the most dangerous bacterial species that threaten human health. Unfortunately, colistin resistance has emerged in A. baumannii. To broaden the study of the resistance mechanism of colistin in A. baumannii, we obtained colistin-resistant mutants via two methods: (i) screening and isolation from a mariner-based A. baumannii ATCC 19606 transposon mutant library; (ii) selection from challenge of ATCC 19606 with successively increasing concentrations of colistin. A total of 41 mutants with colistin MIC of 4 μg/ml to 64 μg/ml were obtained by transposon mutant library screening. Five highly resistant mutants with colistin MICs ranging from 256 μg/ml to 512 μg/ml were selected from successive colistin challenges. Genotypic complementation and remodeling of the transposon mutants revealed that the genes inactivated by the transposon insertion were not responsible for resistance. Whole-genome sequence analysis of the colistin-resistant strains revealed that the main causes of the resistance to colistin were mutations in the pmrA-pmrB genes, including pmrAP102R, pmrBP233S, and pmrBT235N and the novel alleles pmrAI13M and pmrBQ270P. Interestingly, we found that miaAI221V mutation of A. baumannii strain ATCC 19606 (pmrAP102R) resulted in 4-fold increases in the colistin MIC, which rose from 32 μg/ml to 128 μg/ml. But miaAI221V itself had little effect on the colistin susceptibility of ATCC 19606. These data broaden knowledge of the scope of chromosomally encoded mechanisms of resistance to colistin. IMPORTANCE Acinetobacter baumannii is an important Gram-negative opportunistic pathogen commonly infecting critically ill patients. It possesses a remarkable ability to survive in the hospital environment and acquires resistance determinants corresponding to a wide range of antibacterial agents. Given that the current treatment options for multidrug resistant A. baumannii are extremely limited, colistin administration has become the treatment of last resort. However, colistin-resistant A. baumannii strains have recently been reported. The mechanism of resistance to colistin in A. baumannii has rarely been reported. Here, we found two novel mutations in pmrA (I13M) and pmrB (Q270P) that caused colistin resistance. It is also first reported here that the presence of miaA with a I221V mutation enhanced the colistin resistance of pmrAP102R.


2013 ◽  
Vol 57 (8) ◽  
pp. 3738-3745 ◽  
Author(s):  
Hee Ji Lee ◽  
Phillip J. Bergen ◽  
Jurgen B. Bulitta ◽  
Brian Tsuji ◽  
Alan Forrest ◽  
...  

ABSTRACTCombination therapy may be required for multidrug-resistant (MDR)Acinetobacter baumannii. This study systematically investigated bacterial killing and emergence of colistin resistance with colistin and rifampin combinations against MDRA. baumannii. Studies were conducted over 72 h in anin vitropharmacokinetic (PK)/pharmacodynamic (PD) model at inocula of ∼106and ∼108CFU/ml using two MDR clinical isolates ofA. baumannii, FADDI-AB030 (colistin susceptible) and FADDI-AB156 (colistin resistant). Three combination regimens achieving clinically relevant concentrations (constant colistin concentration of 0.5, 2, or 5 mg/liter and a rifampin maximum concentration [Cmax] of 5 mg/liter every 24 hours; half-life, 3 h) were investigated. Microbiological response was measured by serial bacterial counts. Population analysis profiles assessed emergence of colistin resistance. Against both isolates, combinations resulted in substantially greater killing at the low inoculum; combinations containing 2 and 5 mg/liter colistin increased killing at the high inoculum. Combinations were additive or synergistic at 6, 24, 48, and 72 h with all colistin concentrations against FADDI-AB030 and FADDI-AB156 in, respectively, 8 and 11 of 12 cases (i.e., all 3 combinations) at the 106-CFU/ml inoculum and 8 and 7 of 8 cases with the 2- and 5-mg/liter colistin regimens at the 108-CFU/ml inoculum. For FADDI-AB156, killing by the combination was ∼2.5 to 7.5 and ∼2.5 to 5 log10CFU/ml greater at the low inoculum (all colistin concentrations) and high inoculum (2 and 5 mg/liter colistin), respectively. Emergence of colistin-resistant subpopulations was completely suppressed in the colistin-susceptible isolate with all combinations at both inocula. Our study provides important information for optimizing colistin-rifampin combinations against colistin-susceptible and -resistant MDRA. baumannii.


2018 ◽  
Vol 62 (7) ◽  
Author(s):  
Deanna Deveson Lucas ◽  
Bethany Crane ◽  
Amy Wright ◽  
Mei-Ling Han ◽  
Jennifer Moffatt ◽  
...  

ABSTRACT Colistin is a crucial last-line drug used for the treatment of life-threatening infections caused by multidrug-resistant strains of the Gram-negative bacterium Acinetobacter baumannii . However, colistin-resistant A. baumannii isolates can still be isolated following failed colistin therapy. Resistance is most often mediated by the addition of phosphoethanolamine (pEtN) to lipid A by PmrC, following missense mutations in the pmrCAB operon encoding PmrC and the two-component signal transduction system PmrA/PmrB. We recovered a pair of A. baumannii isolates from a single patient before (6009-1) and after (6009-2) failed colistin treatment. These strains displayed low and very high levels of colistin resistance (MICs, 8 to 16 μg/ml and 128 μg/ml), respectively. To understand how increased colistin resistance arose, we sequenced the genome of each isolate, which revealed that 6009-2 had an extra copy of the insertion sequence element IS Aba125 within a gene encoding an H-NS family transcriptional regulator. To confirm the role of H-NS in colistin resistance, we generated an hns deletion mutant in 6009-1 and showed that colistin resistance increased upon the deletion of hns . We also provided 6009-2 with an intact copy of hns and showed that the strain was no longer resistant to high concentrations of colistin. Transcriptomic analysis of the clinical isolates identified more than 150 genes as being differentially expressed in the colistin-resistant hns mutant 6009-2. Importantly, the expression of eptA , encoding a second lipid A-specific pEtN transferase but not pmrC , was increased in the hns mutant. This is the first time an H-NS family transcriptional regulator has been associated with a pEtN transferase and colistin resistance.


2012 ◽  
Vol 56 (9) ◽  
pp. 4856-4861 ◽  
Author(s):  
Céline Vidaillac ◽  
Lothaire Benichou ◽  
Raphaël E. Duval

ABSTRACTColistin resistance, although uncommon, is increasingly being reported among Gram-negative clinical pathogens, and an understanding of its impact on the activity of antimicrobials is now evolving. We evaluated the potential for synergy of colistin plus trimethoprim, trimethoprim-sulfamethoxazole (1/19 ratio), or vancomycin against 12 isolates ofAcinetobacter baumannii(n= 4),Pseudomonas aeruginosa(n= 4), andKlebsiella pneumoniae(n= 4). The strains included six multidrug-resistant clinical isolates,K. pneumoniaeATCC 700603,A. baumanniiATCC 19606,P. aeruginosaATCC 27853, and their colistin-resistant derivatives (KPm1, ABm1, and PAm1, respectively). Antimicrobial susceptibilities were assessed by broth microdilution and population analysis profiles. The potential for synergy of colistin combinations was evaluated using a checkerboard assay, as well as static time-kill experiments at 0.5× and 0.25× MIC. The MIC ranges of vancomycin, trimethoprim, and trimethoprim-sulfamethoxazole (1/19) were ≥128, 4 to ≥128, and 2/38 to >128/2,432 μg/ml, respectively. Colistin resistance demonstrated little impact on vancomycin, trimethoprim, or trimethoprim-sulfamethoxazole MIC values. Isolates with subpopulations heterogeneously resistant to colistin were observed to various degrees in all tested isolates. In time-kill assays, all tested combinations were synergistic against KPm1 at 0.25× MIC and 0.5× MIC and ABm1 and PAm1 at 0.5× MIC. In contrast, none of the tested combinations demonstrated synergy against any colistin-susceptibleP. aeruginosaisolates and clinical strains ofK. pneumoniaeisolates. Only colistin plus trimethoprim or trimethoprim-sulfamethoxazole was synergistic and bactericidal at 0.5× MIC againstK. pneumoniaeATCC 700603. Colistin resistance seems to promote thein vitroactivity of unconventional colistin combinations. Additional experiments are warranted to understand the clinical significance of these observations.


mSphere ◽  
2016 ◽  
Vol 1 (3) ◽  
Author(s):  
Thomas A. Russo ◽  
Akshay Manohar ◽  
Janet M. Beanan ◽  
Ruth Olson ◽  
Ulrike MacDonald ◽  
...  

ABSTRACT Increasing antibiotic resistance in bacteria, particularly Gram-negative bacilli, has significantly affected the ability of physicians to treat infections, with resultant increased morbidity, mortality, and health care costs. In fact, some strains of bacteria are resistant to all available antibiotics, such as Acinetobacter baumannii, which is the focus of this report. Therefore, the development of new antibiotics active against these resistant strains is urgently needed. In this study, BfmR is further validated as an intriguing target for a novel class of antibiotics. Successful inactivation of BfmR would confer the multiple benefits of a decreased ability of A. baumannii to survive in human body fluids, increased sensitivity to complement-mediated bactericidal activity and, importantly, increased sensitivity to other antibiotics. Structural studies support the potential for this “druggable” target, as they identify the potential for small-molecule binding at functionally relevant sites. Next-phase high-throughput screening studies utilizing BfmR are warranted. Identification and validation is the first phase of target-based antimicrobial development. BfmR (RstA), a response regulator in a two-component signal transduction system (TCS) in Acinetobacter baumannii, is an intriguing potential antimicrobial target. A unique characteristic of BfmR is that its inhibition would have the dual benefit of significantly decreasing in vivo survival and increasing sensitivity to selected antimicrobials. Studies on the clinically relevant strain AB307-0294 have shown BfmR to be essential in vivo. Here, we demonstrate that this phenotype in strains AB307-0294 and AB908 is mediated, in part, by enabling growth in human ascites fluid and serum. Further, BfmR conferred resistance to complement-mediated bactericidal activity that was independent of capsular polysaccharide. Importantly, BfmR also increased resistance to the clinically important antimicrobials meropenem and colistin. BfmR was highly conserved among A. baumannii strains. The crystal structure of the receiver domain of BfmR was determined, lending insight into putative ligand binding sites. This enabled an in silico ligand binding analysis and a blind docking strategy to assess use as a potential druggable target. Predicted binding hot spots exist at the homodimer interface and the phosphorylation site. These data support pursuing the next step in the development process, which includes determining the degree of inhibition needed to impact growth/survival and the development a BfmR activity assay amenable to high-throughput screening for the identification of inhibitors. Such agents would represent a new class of antimicrobials active against A. baumannii which could be active against other Gram-negative bacilli that possess a TCS with shared homology. IMPORTANCE Increasing antibiotic resistance in bacteria, particularly Gram-negative bacilli, has significantly affected the ability of physicians to treat infections, with resultant increased morbidity, mortality, and health care costs. In fact, some strains of bacteria are resistant to all available antibiotics, such as Acinetobacter baumannii, which is the focus of this report. Therefore, the development of new antibiotics active against these resistant strains is urgently needed. In this study, BfmR is further validated as an intriguing target for a novel class of antibiotics. Successful inactivation of BfmR would confer the multiple benefits of a decreased ability of A. baumannii to survive in human body fluids, increased sensitivity to complement-mediated bactericidal activity and, importantly, increased sensitivity to other antibiotics. Structural studies support the potential for this “druggable” target, as they identify the potential for small-molecule binding at functionally relevant sites. Next-phase high-throughput screening studies utilizing BfmR are warranted.


2012 ◽  
Vol 81 (3) ◽  
pp. 684-689 ◽  
Author(s):  
Jennifer H. Moffatt ◽  
Marina Harper ◽  
Ashley Mansell ◽  
Bethany Crane ◽  
Timothy C. Fitzsimons ◽  
...  

ABSTRACTInfections caused by multidrug-resistantAcinetobacter baumanniihave emerged as a serious global health problem. We have shown previously thatA. baumanniican become resistant to the last-line antibiotic colistin via the loss of lipopolysaccharide (LPS), including the lipid A anchor, from the outer membrane (J. H. Moffatt, M. Harper, P. Harrison, J. D. Hale, E. Vinogradov, T. Seemann, R. Henry, B. Crane, F. St. Michael, A. D. Cox, B. Adler, R. L. Nation, J. Li, and J. D. Boyce, Antimicrob. Agents Chemother.54:4971–4977, 2010). Here, we show how these LPS-deficient bacteria interact with components of the host innate immune system. LPS-deficientA. baumanniistimulated 2- to 4-fold lower levels of NF-κB activation and tumor necrosis factor alpha (TNF-α) secretion from immortalized murine macrophages, but it still elicited low levels of TNF-α secretion via a Toll-like receptor 2-dependent mechanism. Furthermore, we show that while LPS-deficientA. baumanniiwas not altered in its resistance to human serum, it showed increased susceptibility to the human antimicrobial peptide LL-37. Thus, LPS-deficient, colistin-resistantA. baumanniishows significantly altered activation of the host innate immune inflammatory response.


2018 ◽  
Vol 56 (5) ◽  
Author(s):  
Konrad Gwozdzinski ◽  
Saina Azarderakhsh ◽  
Can Imirzalioglu ◽  
Linda Falgenhauer ◽  
Trinad Chakraborty

ABSTRACTThe plasmid-located colistin resistance genemcr-1confers low-level resistance to colistin, a last-line antibiotic against multidrug-resistant Gram-negative bacteria. Current CLSI-EUCAST recommendations require the use of a broth microdilution (BMD) method with cation-adjusted Mueller-Hinton (CA-MH) medium for colistin susceptibility testing, but approximately 15% of all MCR-1 producers are classified as sensitive in that broth. Here we report on an improved calcium-enhanced Mueller-Hinton (CE-MH) medium that permits simple and reliable determination ofmcr-1-containingEnterobacteriaceae. Colistin susceptibility testing was performed for 50mcr-1-containingEscherichia coliandKlebsiella pneumoniaeisolates, 7 intrinsically polymyxin-resistant species,K. pneumoniaeandE. coliisolates with acquired resistance to polymyxins due tomgrBandpmrBmutations, respectively, and 32mcr-1-negative, colistin-susceptible isolates ofAcinetobacter baumannii,Citrobacter freundii,Enterobacter cloacae,E. coli,K. pneumoniae, andSalmonella entericaserovar Typhimurium. A comparison of the colistin MICs determined in CA-MH medium and those obtained in CE-MH medium was performed using both the BMD and strip-based susceptibility test formats. We validated the data using an isogenic IncX4 plasmid lackingmcr-1. Use of the CE-MH broth provides clear separation between resistant and susceptible isolates in both BMD and gradient diffusion assays; this is true for bothmcr-1-containingEnterobacteriaceaeisolates and those exhibiting either intrinsic or acquired colistin resistance. CE-MH medium is simple to prepare and overcomes current problems associated with BMD and strip-based colistin susceptibility testing, and use of the medium is easy to implement in routine diagnostic laboratories, even in resource-poor settings.


2018 ◽  
Vol 57 (3) ◽  
Author(s):  
Lisa M. Leung ◽  
Christi L. McElheny ◽  
Francesca M. Gardner ◽  
Courtney E. Chandler ◽  
Sarah L. Bowler ◽  
...  

ABSTRACT Acinetobacter baumannii is a prevalent nosocomial pathogen with a high incidence of multidrug resistance. Treatment of infections due to this organism with colistin, a last-resort antibiotic of the polymyxin class, can result in the emergence of colistin-resistant strains. Colistin resistance primarily occurs via modifications of the terminal phosphate moieties of lipopolysaccharide-derived lipid A, which reduces overall membrane electronegativity. These modifications are readily identified by mass spectrometry (MS). In this study, we prospectively collected Acinetobacter baumannii complex clinical isolates from a hospital system in Pennsylvania over a 3-year period. All isolates were evaluated for colistin resistance using standard MIC testing by both agar dilution and broth microdilution, as well as genospecies identification and lipid A profiling using MS analyses. Overall, an excellent correlation between colistin susceptibility and resistance, determined by MIC testing, and the presence of a lipid A modification, determined by MS, was observed with a sensitivity of 92.9% and a specificity of 94.0%. Additionally, glycolipid profiling was able to differentiate A. baumannii complex organisms based on their membrane lipids. With the growth of MS use in clinical laboratories, a reliable MS-based glycolipid phenotyping method that identifies colistin resistance in A. baumannii complex clinical isolates, as well as other Gram-negative organisms, represents an alternative or complementary approach to existing diagnostics.


2012 ◽  
Vol 56 (11) ◽  
pp. 5961-5970 ◽  
Author(s):  
Luísa C. S. Antunes ◽  
Francesco Imperi ◽  
Fabrizia Minandri ◽  
Paolo Visca

ABSTRACTMultidrug-resistantAcinetobacter baumanniiposes a tremendous challenge to traditional antibiotic therapy. Due to the crucial role of iron in bacterial physiology and pathogenicity, we investigated iron metabolism as a possible target for anti-A. baumanniichemotherapy using gallium as an iron mimetic. Due to chemical similarity, gallium competes with iron for binding to several redox enzymes, thereby interfering with a number of essential biological reactions. We found that Ga(NO3)3, the active component of an FDA-approved drug (Ganite), inhibits the growth of a collection of 58A. baumanniistrains in both chemically defined medium and human serum, at concentrations ranging from 2 to 80 μM and from 4 to 64 μM, respectively. Ga(NO3)3delayed the entry ofA. baumanniiinto the exponential phase and drastically reduced bacterial growth rates. Ga(NO3)3activity was strongly dependent on iron availability in the culture medium, though the mechanism of growth inhibition was independent of dysregulation of gene expression controlled by the ferric uptake regulator Fur. Ga(NO3)3also protectedGalleria mellonellalarvae from lethalA. baumanniiinfection, with survival rates of ≥75%. At therapeutic concentrations for humans (28 μM plasma levels), Ga(NO3)3inhibited the growth in human serum of 76% of the multidrug-resistantA. baumanniiisolates tested by ≥90%, raising expectations on the therapeutic potential of gallium for the treatment ofA. baumanniibloodstream infections. Ga(NO3)3also showed strong synergism with colistin, suggesting that a colistin-gallium combination holds promise as a last-resort therapy for infections caused by pan-resistantA. baumannii.


Sign in / Sign up

Export Citation Format

Share Document