scholarly journals Human Enteric Defensin 5 Promotes Shigella Infection of Macrophages

2019 ◽  
Vol 88 (1) ◽  
Author(s):  
Dan Xu ◽  
Chongbing Liao ◽  
Jiu Xiao ◽  
Kun Fang ◽  
Wei Zhang ◽  
...  

ABSTRACT Human α-defensins are 3- to 5-kDa disulfide-bridged peptides with a multitude of antimicrobial activities and immunomodulatory functions. Recent studies show that human enteric α-defensin 5 (HD5), a host defense peptide important for intestinal homeostasis and innate immunity, aids the highly infectious enteropathogen Shigella in breaching the intestinal epithelium in vitro and in vivo. Whether and how HD5 influences Shigella infection of resident macrophages following its invasion of the intestinal epithelium remain poorly understood. Here, we report that HD5 greatly promoted phagocytosis of Shigella by macrophages by targeting the bacteria to enhance bacterium-to-cell contacts in a structure- and sequence-dependent fashion. Subsequent intracellular multiplication of phagocytosed Shigella led to massive necrotic cell death and release of the bacteria. HD5-promoted phagocytosis of Shigella was independent of the status of the type 3 secretion system. Furthermore, HD5 neither inhibited nor enhanced phagosomal escape of Shigella. Collectively, these findings confirm a potential pathogenic role of HD5 in Shigella infection of not only epithelial cells but also macrophages, illuminating how an enteropathogen exploits a host protective factor for virulence and infection.

2013 ◽  
Vol 41 (5) ◽  
pp. 1325-1330 ◽  
Author(s):  
Marion Babot ◽  
Alexander Galkin

The unique feature of mitochondrial complex I is the so-called A/D transition (active–deactive transition). The A-form catalyses rapid oxidation of NADH by ubiquinone (k ~104 min−1) and spontaneously converts into the D-form if the enzyme is idle at physiological temperatures. Such deactivation occurs in vitro in the absence of substrates or in vivo during ischaemia, when the ubiquinone pool is reduced. The D-form can undergo reactivation given both NADH and ubiquinone availability during slow (k ~1–10 min−1) catalytic turnover(s). We examined known conformational differences between the two forms and suggested a mechanism exerting A/D transition of the enzyme. In addition, we discuss the physiological role of maintaining the enzyme in the D-form during the ischaemic period. Accumulation of the D-form of the enzyme would prevent reverse electron transfer from ubiquinol to FMN which could lead to superoxide anion generation. Deactivation would also decrease the initial burst of respiration after oxygen reintroduction. Therefore the A/D transition could be an intrinsic protective mechanism for lessening oxidative damage during the early phase of reoxygenation. Exposure of Cys39 of mitochondrially encoded subunit ND3 makes the D-form susceptible for modification by reactive oxygen species and nitric oxide metabolites which arrests the reactivation of the D-form and inhibits the enzyme. The nature of thiol modification defines deactivation reversibility, the reactivation timescale, the status of mitochondrial bioenergetics and therefore the degree of recovery of the ischaemic tissues after reoxygenation.


2016 ◽  
Vol 198 (11) ◽  
pp. 1675-1682 ◽  
Author(s):  
Kelly A. Miller ◽  
Madeline K. Sofia ◽  
Jacob W. A. Weaver ◽  
Christopher H. Seward ◽  
Michelle Dziejman

ABSTRACTGenes carried on the type 3 secretion system (T3SS) pathogenicity island ofVibrio choleraenon-O1/non-O139 serogroup strain AM-19226 must be precisely regulated in order for bacteria to cause disease. Previously reported results showed that both T3SS function and the presence of bile are required to cause Caco2-BBE cell cytotoxicity during coculture with strain AM-19226. We therefore investigated additional parameters affectingin vitrocell death, including bacterial load and the role of three transmembrane transcriptional regulatory proteins, VttRA, VttRB, and ToxR. VttRAand VttRBare encoded on the horizontally acquired T3SS genomic island, whereas ToxR is encoded on the ancestral chromosome. While strains carrying deletions in any one of the three transcriptional regulatory genes are unable to cause eukaryotic cell death, the results of complementation studies point to a hierarchy of regulatory control that converges onvttRBexpression. The data suggest both that ToxR and VttRAact upstream of VttRBand that modifying the level of eithervttRAorvttRBexpression can strongly influence T3SS gene expression. We therefore propose a model whereby T3SS activity and, hence,in vitrocytotoxicity are ultimately regulated byvttRBexpression.IMPORTANCEIn contrast to O1 and O139 serogroupV. choleraestrains that cause cholera using two main virulence factors (toxin-coregulated pilus [TCP] and cholera toxin [CT]), O39 serogroup strain AM-19226 uses a type 3 secretion system as its principal virulence mechanism. Although the regulatory network governing TCP and CT expression is well understood, the factors influencing T3SS-associated virulence are not. Using anin vitromammalian cell model to investigate the role of three ToxR-like transmembrane transcriptional activators in causing T3SS-dependent cytotoxicity, we found that expression levels and a hierarchical organization were important for promoting T3SS gene expression. Furthermore, our results suggest that horizontally acquired, ToxR-like proteins act in concert with the ancestral ToxR protein to orchestrate T3SS-mediated pathogenicity.


2020 ◽  
Author(s):  
Cláudia Brito ◽  
Francisco S. Mesquita ◽  
Daniel S. Osório ◽  
Joana Pereira ◽  
Neil Billington ◽  
...  

AbstractNon-muscle myosin 2A (NM2A) is a key cytoskeletal enzyme that along with actin assembles into actomyosin filaments inside cells. NM2A is fundamental in cellular processes requiring force generation such as cell adhesion, motility and cell division, and plays important functions in different stages of development and during the progression of viral and bacterial infections. We previously identified at the motor domain of the NM2A, a novel Src-dependent tyrosine phosphorylation on residue 158 (pTyr158), which is promoted by Listeria monocytogenes infection. Despite the central role of NM2A in several cell biology processes, the pTyr at this specific residue had never been reported. Here we showed that LLO, a toxin secreted by Listeria, is sufficient to trigger NM2A pTyr158 by activating Src, which coordinates actomyosin remodeling. We further addressed the role of NM2A pTyr158 on the organization and dynamics of the actomyosin cytoskeleton and found that by controlling the activation of the NM2A, the status of the pTyr158 alters cytoskeletal organization, dynamics of focal adhesions and cell motility, without affecting NM2A enzymatic activity in vitro. Ultimately, by using Caenorhabditis elegans as a model to assess the role of this pTyr158in vivo, we found that the status of the pTyr158 has implications in gonad function and is required for organism survival under stress conditions. We conclude that the fine control of the NM2A pTyr158 is required for cell cytoskeletal remodeling and dynamics, and we propose Src-dependent NM2A pTyr158 as a novel layer of regulation of the actomyosin cytoskeleton.


2005 ◽  
Vol 73 (11) ◽  
pp. 7190-7197 ◽  
Author(s):  
Shaoji Cheng ◽  
Cornelius J. Clancy ◽  
Mary Ann Checkley ◽  
Zongde Zhang ◽  
Karen L. Wozniak ◽  
...  

ABSTRACT We previously identified Candida albicans Not5p as an immunogenic protein expressed during oropharyngeal candidiasis (OPC). In this study, we demonstrate that C. albicans NOT5 reverses the growth defects of a Saccharomyces cerevisiae not5 mutant strain at 37°C, suggesting that the genes share at least some functional equivalence. We implicate C. albicans NOT5 in the pathogenesis of disseminated candidiasis (DC) induced by intravenous infection among neutropenic and nonimmunosuppressed mice, as well as in that of OPC in mice immunosuppressed with corticosteroids. We find no role in virulence, however, among neutropenic and corticosteroid-suppressed mice with DC resulting from gastrointestinal translocation, nor do we implicate the gene in vulvovaginal candidiasis among mice in pseudoestrus. These findings suggest that the role of NOT5 in virulence depends on the specific in vivo environment and is influenced by diverse factors such as tissue site, portal of entry, and the status of host defenses. NOT5 is necessary for normal adherence to colonic and cervical epithelial cells in vitro, demonstrating that such assays cannot fully replicate disease processes in vivo. Lastly, antibody responses against Not5p do not differ in the sera of patients with OPC, patients with DC, and healthy controls, suggesting that the protein is associated with both commensalism and the pathogenesis of disease.


2021 ◽  
Vol 8 ◽  
Author(s):  
Regitze Renee Pedersen ◽  
Volker Krömker ◽  
Thomas Bjarnsholt ◽  
Kirstin Dahl-Pedersen ◽  
Rikke Buhl ◽  
...  

Bovine mastitis is one of the most important diseases in the dairy industry and has detrimental impact on the economy and welfare of the animals. Further, treatment failure results in increased antibiotic use in the dairy industry, as some of these mastitis cases for unknown reasons are not resolved despite standard antibiotic treatment. Chronic biofilm infections are notoriously known to be difficult to eradicate with antibiotics and biofilm formation could be a possible explanation for mastitis cases that are not resolved by standard treatment. This paper reviews the current literature on biofilm in bovine mastitis research to evaluate the status and methods used in the literature. Focus of the current research has been on isolates from milk samples and investigation of their biofilm forming properties in vitro. However, in vitro observations of biofilm formation are not easily comparable with the in vivo situation inside the udder. Only two papers investigate the location and distribution of bacterial biofilms inside udders of dairy cows with mastitis. Based on the current knowledge, the role of biofilm in bovine mastitis is still unclear and more in vivo investigations are needed to uncover the actual role of biofilm formation in the pathogenesis of bovine mastitis.


1995 ◽  
Vol 108 (12) ◽  
pp. 3715-3724 ◽  
Author(s):  
C. Peters ◽  
T. Aebischer ◽  
Y.D. Stierhof ◽  
M. Fuchs ◽  
P. Overath

Amastigotes of the protozoan parasite Leishmania proliferate in phagolysosomes of mammalian macrophages. Propagation of the infection is considered to occur by host-cell rupture and uptake of released parasites by uninfected macrophages. In this study, the kinetics of binding of L mexicana mexicana amastigotes to COS cells and to COS cells transfected with three different macrophage receptors (FcRII-B2, receptor for the Fc-domain of immunoglobulins; CR3, complement type 3 receptor and the mannose receptor) is compared to the rate of adhesion to peritoneal macrophages. Amastigotes isolated from macrophages cultivated in vitro bind with slow, sigmoid kinetics to COS cells expressing either of the three receptors, or to peritoneal macrophages. In contrast, amastigotes isolated from mouse lesions bind with rapid, hyperbolic kinetics to COS cells expressing the Fc receptor or to peritoneal macrophages but with slow, sigmoid kinetics to COS cells expressing the CR3 or the mannose receptor. As shown by immunofluorescence experiments, lesion-derived amastigotes contain host-derived immunoglobulins (Ig) but no complement component 3 at their surface. It is concluded that amastigotes contain no intrinsic ligand at their surface, which enables high-affinity interactions with macrophages. Opsonization by specific Ig may be of relevance in vivo because firstly, in cryosections of mouse lesions extracellular amastigotes containing surface Ig can be detected and, secondly, B cell-deficient mice reconstituted with parasite-specific Ig show a modest increase in the rate of lesion development. In addition, it is shown that amastigotes are internalized by COS cells and grow in large parasitophorous vacuoles similar to those observed in macrophages.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
HM Lee ◽  
TG Ahn ◽  
CW Kim ◽  
HJ An
Keyword(s):  

1987 ◽  
Vol 26 (01) ◽  
pp. 1-6 ◽  
Author(s):  
S. Selvaraj ◽  
M. R. Suresh ◽  
G. McLean ◽  
D. Willans ◽  
C. Turner ◽  
...  

The role of glycoconjugates in tumor cell differentiation has been well documented. We have examined the expression of the two anomers of the Thomsen-Friedenreich antigen on the surface of human, canine and murine tumor cell membranes both in vitro and in vivo. This has been accomplished through the synthesis of the disaccharide terminal residues in both a and ß configuration. Both entities were used to generate murine monoclonal antibodies which recognized the carbohydrate determinants. The determination of fine specificities of these antibodies was effected by means of cellular uptake, immunohistopathology and immunoscintigraphy. Examination of pathological specimens of human and canine tumor tissue indicated that the expressed antigen was in the β configuration. More than 89% of all human carcinomas tested expressed the antigen in the above anomeric form. The combination of synthetic antigens and monoclonal antibodies raised specifically against them provide us with invaluable tools for the study of tumor marker expression in humans and their respective animal tumor models.


Sign in / Sign up

Export Citation Format

Share Document