scholarly journals The LasB Elastase of Pseudomonas aeruginosa Acts in Concert with Alkaline Protease AprA To Prevent Flagellin-Mediated Immune Recognition

2015 ◽  
Vol 84 (1) ◽  
pp. 162-171 ◽  
Author(s):  
Fiordiligie Casilag ◽  
Anne Lorenz ◽  
Jonas Krueger ◽  
Frank Klawonn ◽  
Siegfried Weiss ◽  
...  

The opportunistic pathogenPseudomonas aeruginosais capable of establishing severe and persistent infections in various eukaryotic hosts. It encodes a wide array of virulence factors and employs several strategies to evade immune detection. In the present study, we screened the Harvard Medical School transposon mutant library ofP. aeruginosaPA14 for bacterial factors that modulate interleukin-8 responses in A549 human airway epithelial cells. We found that in addition to the previously identified alkaline protease AprA, the elastase LasB is capable of degrading exogenous flagellin under calcium-replete conditions and prevents flagellin-mediated immune recognition. Our results indicate that the production of two proteases with anti-flagellin activity provides a failsafe mechanism forP. aeruginosato ensure the maintenance of protease-dependent immune-modulating functions.

mBio ◽  
2013 ◽  
Vol 4 (1) ◽  
Author(s):  
Youai Hao ◽  
Jerry D. King ◽  
Steven Huszczynski ◽  
Dana Kocíncová ◽  
Joseph S. Lam

ABSTRACTCommon polysaccharide antigen (CPA) is a conserved cell surface polysaccharide produced byPseudomonas aeruginosa. It contains a rhamnan homopolymer and is one of the two forms of O polysaccharide attached toP. aeruginosalipopolysaccharide (LPS). Our laboratory has previously characterized an eight-gene cluster (pa5447-pa5454inP. aeruginosaPAO1) required for biosynthesis of CPA. Here we demonstrate that an adjacent five-gene clusterpa5455-pa5459is also involved. Using reverse transcriptase PCR (RT-PCR), we showed that the original eight-gene cluster and the new five-gene cluster are both organized as operons. We have analyzed the LPS phenotypes of in-frame deletion mutants made in each of the five genes, and the results verified that these five genes are indeed required for CPA biosynthesis, extending the CPA biosynthesis locus to contain 13 contiguous genes. By performing overexpression experiments of different sets of these biosynthesis genes, we were able to obtain information about their possible functions in CPA biosynthesis.IMPORTANCELipopolysaccharide (LPS) is an important cell surface structure of Gram-negative bacteria. The human opportunistic pathogenPseudomonas aeruginosasimultaneously produces an O-antigen-specific (OSA) form and a common polysaccharide antigen (CPA) form of LPS. CPA, the focus of this study, is composed of α-1-2, α1-3-linkedd-rhamnose sugars and has been shown to be important for attachment of the bacteria to human airway epithelial cells. Genome sequencing of this species revealed a new five-gene cluster that we predicted to be involved in CPA biosynthesis and modification. In this study, we have generated chromosomal knockouts by performing in-frame deletions and allelic replacements. Characterizing the function of each of the five genes is important for us to better understand CPA biosynthesis and the mechanisms of chain length termination and regulation of this unique D-rhamnan polysaccharide.


mSphere ◽  
2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Anna C. Zemke ◽  
Emily J. D’Amico ◽  
Emily C. Snell ◽  
Angela M. Torres ◽  
Naomi Kasturiarachi ◽  
...  

ABSTRACT Pseudomonas aeruginosa grows in highly antibiotic-tolerant biofilms during chronic airway infections. Dispersal of bacteria from biofilms may restore antibiotic susceptibility or improve host clearance. We describe models to study biofilm dispersal in the nutritionally complex environment of the human airway. P. aeruginosa was cocultured in the apical surface of airway epithelial cells (AECs) in a perfusion chamber. Dispersal, triggered by sodium nitrite, a nitric oxide (NO) donor, was tracked by live cell microscopy. Next, a static model was developed in which biofilms were grown on polarized AECs without flow. We observed that NO-triggered biofilm dispersal was an energy-dependent process. From the existing literature, NO-mediated biofilm dispersal is regulated by DipA, NbdA, RbdA, and MucR. Interestingly, altered signaling pathways appear to be used in this model, as deletion of these genes failed to block NO-induced biofilm dispersal. Similar results were observed using biofilms grown in an abiotic model on glass with iron-supplemented cell culture medium. In cystic fibrosis, airway mucus contributes to the growth environment, and a wide range of bacterial phenotypes are observed; therefore, we tested biofilm dispersal in a panel of late cystic fibrosis clinical isolates cocultured in the mucus overlying primary human AECs. Finally, we examined dispersal in combination with the clinically used antibiotics ciprofloxacin, aztreonam and tobramycin. In summary, we have validated models to study biofilm dispersal in environments that recapitulate key features of the airway and identified combinations of currently used antibiotics that may enhance the therapeutic effect of biofilm dispersal. IMPORTANCE During chronic lung infections, Pseudomonas aeruginosa grows in highly antibiotic-tolerant communities called biofilms that are difficult for the host to clear. We have developed models for studying P. aeruginosa biofilm dispersal in environments that replicate key features of the airway. We found that mechanisms of biofilm dispersal in these models may employ alternative or additional signaling mechanisms, highlighting the importance of the growth environment in dispersal events. We have adapted the models to accommodate apical fluid flow, bacterial clinical isolates, antibiotics, and primary human airway epithelial cells, all of which are relevant to understanding bacterial behaviors in the context of human disease. We also examined dispersal agents in combination with commonly used antipseudomonal antibiotics and saw improved clearance when nitrite was combined with the antibiotic aztreonam.


2015 ◽  
Vol 83 (8) ◽  
pp. 3006-3014 ◽  
Author(s):  
Meenu Mishra ◽  
Adam Ressler ◽  
Larry S. Schlesinger ◽  
Daniel J. Wozniak

Pseudomonas aeruginosais a versatile opportunistic pathogen that can cause devastating persistent infections. Complement is a highly conserved pathway of the innate immune system, and its role in the first line of defense against pathogens is widely appreciated. One of the earliest events in the complement cascade is the conversion of C3 to C3a and C3b, the latter typically binds to one or more acceptor molecules on the pathogen surface. We previously demonstrated that complement C3b binding acceptors exist on theP. aeruginosasurface. In the current study, we utilized either C3 polyclonal or C3b monoclonal antibodies in a far-Western technique followed by mass spectroscopy to identify the C3b acceptor molecule(s) on theP. aeruginosasurface. Our data provide evidence that OprF (an outer membrane porin, highly conserved in thePseudomonadaceae) binds C3b. AnoprF-deficientP. aeruginosastrain exhibits reduced C3 deposition compared to the wild type. We observed reduced internalization ofoprF-deficient bacteria by neutrophils after opsonization compared with wild-typeP. aeruginosa. Heterologous expression of OprF significantly enhanced C3b binding and increased serum-mediated bactericidal effects in complement-susceptibleEscherichia coli. Furthermore, the predicted secondary structure of the C-terminal, surface-exposed region of OprF has high structural identity to the OmpA domain of several other Gram-negative bacteria, one of which is known to bind C3b. Therefore, these findings provide new insights into the biology of complement interactions withP. aeruginosaand other Gram-negative bacteria.


2011 ◽  
Vol 79 (7) ◽  
pp. 2792-2800 ◽  
Author(s):  
Kang-Mu Lee ◽  
Mi Young Yoon ◽  
Yongjin Park ◽  
Joon-Hee Lee ◽  
Sang Sun Yoon

ABSTRACTPseudomonas aeruginosa, an opportunistic pathogen of clinical importance, causes chronic airway infections in patients with cystic fibrosis (CF). Current literature suggests that pockets with reduced oxygen tension exist in the CF airway mucus. However, virulence features of this opportunistic pathogen under such conditions are largely unknown. Cell-free supernatant of the standard laboratoryP. aeruginosastrain PAO1 obtained from anaerobic culture, but not aerobic culture, failed to kill A549 human airway epithelial cells. Further investigation revealed that this reduced cytotoxicity upon anaerobiosis was due to the suppressed secretion of elastase, a virulence factor controlled byP. aeruginosaquorum sensing (QS). Both alacZ-reporter fusion assay and quantitative real-time PCR (RT-PCR) analysis demonstrated that transcription of the elastase-encodinglasBgene was substantially decreased during anaerobic growth compared with aerobic growth. Moreover, transcription of other genes controlled by the LasI/R QS system, such asrhlR,vqsR,mvfR, andrsaL, was also repressed under the same anaerobic growth conditions. Importantly, synthesis of 3-oxo-C12-HSL (PAI-1), an autoinducer molecule that mediates induction of the LasI/R QS system, was >22-fold decreased during anaerobic growth while C4-HSL (PAI-2), which mediates RhlI/R QS, was nondetectable under the same growth conditions. Transcription of thelasBgene was restored by exogenous supplementation with autoinducers, with PAI-2 more effective than PAI-1 orPseudomonasquinolone signal (PQS) at restoring transcription of thelasBgene. Together, these results suggest that anaerobiosis deprivesP. aeruginosaof the ability to regulate its virulence via QS and this misregulation attenuates the pathogenic potential of this important pathogen.


2005 ◽  
Vol 73 (11) ◽  
pp. 7705-7717 ◽  
Author(s):  
Jennifer C. Hsieh ◽  
Doris M. Tham ◽  
Weijun Feng ◽  
Fan Huang ◽  
Selamawit Embaie ◽  
...  

ABSTRACT Prevention of pulmonary Pseudomonas aeruginosa infections represents a critical unmet medical need for cystic fibrosis (CF) patients. We have examined the tenet that a mucosal immunization approach can reduce interactions of a piliated form of this opportunistic pathogen with respiratory epithelial cells. Vaccinations were performed using ntPEpilinPAK, a protein chimera composed of a nontoxic form of P. aeruginosa exotoxin A (ntPE), where the C-terminal loop amino acid sequence of the PAK strain pilin protein was inserted in place of the ntPE Ib domain. Intranasal (i.n.) immunization of BALB/c mice with ntPEpilinPAK generated both serum and saliva immune responses. A series of in vitro studies showed that diluted samples of saliva obtained from immunized mice reduced pilin-dependent P. aeruginosa binding to polarized human tracheal epithelial cells, protected human pulmonary epithelial cells from cytotoxic actions associated with bacterial challenge, and reduced exotoxin A toxicity. Overall, i.n. administration of ntPEpilinPAK induced mucosal and systemic immune responses that may be beneficial for blocking early stage adhesion and/or infection events of epithelial cell-P. aeruginosa interactions at oropharyngeal surfaces.


2007 ◽  
Vol 75 (12) ◽  
pp. 5640-5650 ◽  
Author(s):  
Sean Y. Kassim ◽  
Sina A. Gharib ◽  
Brigham H. Mecham ◽  
Timothy P. Birkland ◽  
William C. Parks ◽  
...  

ABSTRACT Airway epithelium is the initial point of host-pathogen interaction in Pseudomonas aeruginosa infection, an important pathogen in cystic fibrosis and nosocomial pneumonia. We used global gene expression analysis to determine airway epithelial transcriptional responses dependent on matrilysin (matrix metalloproteinase 7 [MMP-7]) and stromelysin-2 (MMP-10), two MMPs induced by acute P. aeruginosa pulmonary infection. Extraction of differential gene expression (EDGE) analysis of gene expression changes in P. aeruginosa-infected organotypic tracheal epithelial cell cultures from wild-type, Mmp7 −/−, and Mmp10 −/− mice identified 2,091 matrilysin-dependent and 1,628 stromelysin-2-dependent genes that were differentially expressed. Key node network analysis showed that these MMPs controlled distinct gene expression programs involved in proliferation, cell death, immune responses, and signal transduction, among other host defense processes. Our results demonstrate discrete roles for these MMPs in regulating epithelial responses to Pseudomonas infection and show that a global genomics strategy can be used to assess MMP function.


PLoS ONE ◽  
2009 ◽  
Vol 4 (10) ◽  
pp. e7259 ◽  
Author(s):  
Eloïse Raoust ◽  
Viviane Balloy ◽  
Ignacio Garcia-Verdugo ◽  
Lhousseine Touqui ◽  
Reuben Ramphal ◽  
...  

2015 ◽  
Vol 9 (4) ◽  
pp. 1039-1050 ◽  
Author(s):  
J L Jeffries ◽  
J Jia ◽  
W Choi ◽  
S Choe ◽  
J Miao ◽  
...  

2020 ◽  
Vol 9 (26) ◽  
Author(s):  
Andrea Sass ◽  
Tom Coenye

ABSTRACT Pseudomonas aeruginosa is an opportunistic pathogen that is able to cause various infections, including airway infections in cystic fibrosis patients. Here, we present the complete closed and annotated genome sequence of P. aeruginosa AA2, an isolate obtained early during infection of the respiratory tract of a German cystic fibrosis patient.


mSphere ◽  
2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Tianyuan Cao ◽  
Jonathan V. Sweedler ◽  
Paul W. Bohn ◽  
Joshua D. Shrout

ABSTRACT Pseudomonas aeruginosa is an opportunistic human pathogen important to diseases such as cystic fibrosis. P. aeruginosa has multiple quorum-sensing (QS) systems, one of which utilizes the signaling molecule 2-heptyl-3-hydroxy-4-quinolone (Pseudomonas quinolone signal [PQS]). Here, we use hyperspectral Raman imaging to elucidate the spatiotemporal PQS distributions that determine how P. aeruginosa regulates surface colonization and its response to both metabolic stress and competition from other bacterial strains. These chemical imaging experiments illustrate the strong link between environmental challenges, such as metabolic stress caused by nutritional limitations or the presence of another bacterial species, and PQS signaling. Metabolic stress elicits a complex response in which limited nutrients induce the bacteria to produce PQS earlier, but the bacteria may also pause PQS production entirely if the nutrient concentration is too low. Separately, coculturing P. aeruginosa in the proximity of another bacterial species, or its culture supernatant, results in earlier production of PQS. However, these differences in PQS appearance are not observed for all alkyl quinolones (AQs) measured; the spatiotemporal response of 2-heptyl-4-hydroxyquinoline N-oxide (HQNO) is highly uniform for most conditions. These insights on the spatiotemporal distributions of quinolones provide additional perspective on the behavior of P. aeruginosa in response to different environmental cues. IMPORTANCE Alkyl quinolones (AQs), including Pseudomonas quinolone signal (PQS), made by the opportunistic pathogen Pseudomonas aeruginosa have been associated with both population density and stress. The regulation of AQ production is known to be complex, and the stimuli that modulate AQ responses are not fully clear. Here, we have used hyperspectral Raman chemical imaging to examine the temporal and spatial profiles of AQs exhibited by P. aeruginosa under several potentially stressful conditions. We found that metabolic stress, effected by carbon limitation, or competition stress, effected by proximity to other species, resulted in accelerated PQS production. This competition effect did not require cell-to-cell interaction, as evidenced by the fact that the addition of supernatants from either Escherichia coli or Staphylococcus aureus led to early appearance of PQS. Lastly, the fact that these modulations were observed for PQS but not for all AQs suggests a high level of complexity in AQ regulation that remains to be discerned.


Sign in / Sign up

Export Citation Format

Share Document