scholarly journals Activities of Murine Peripheral Blood Lymphocytes Provide Immune Correlates That Predict Francisella tularensis Vaccine Efficacy

2016 ◽  
Vol 84 (4) ◽  
pp. 1054-1061 ◽  
Author(s):  
Roberto De Pascalis ◽  
Lara Mittereder ◽  
Nikki J. Kennett ◽  
Karen L. Elkins

We previously identified potential correlates of vaccine-induced protection againstFrancisella tularensisusing murine splenocytes and further demonstrated that the relative levels of gene expression varied significantly between tissues. In contrast to splenocytes, peripheral blood leukocytes (PBLs) represent a means to bridge vaccine efficacy in animal models to that in humans. Here we take advantage of this easily accessible source of immune cells to investigate cell-mediated immune responses against tularemia, whose sporadic incidence makes clinical trials of vaccines difficult. Using PBLs from mice vaccinated withF. tularensisLive Vaccine Strain (LVS) and related attenuated strains, we combined the control ofin vitroFrancisellareplication within macrophages with gene expression analyses. Thein vitrofunctions of PBLs, particularly the control of intramacrophage LVS replication, reflected the hierarchy ofin vivoprotection conferred by LVS-derived vaccines. Moreover, several genes previously identified by the evaluation of splenocytes were also found to be differentially expressed in immune PBLs. In addition, more extensive screening identified additional potential correlates of protection. Finally, expression of selected genes in mouse PBLs obtained shortly after vaccination, withoutex vivorestimulation, was different among vaccine groups, suggesting a potential tool to monitor efficacious vaccine-induced immune responses againstF. tularensis. Our studies demonstrate that murine PBLs can be used productively to identify potential correlates of protection againstF. tularensisand to expand and refine a comprehensive set of protective correlates.

2012 ◽  
Vol 19 (9) ◽  
pp. 1393-1398 ◽  
Author(s):  
Yohsuke Ogawa ◽  
Yu Minagawa ◽  
Fang Shi ◽  
Masahiro Eguchi ◽  
Yoshihiro Muneta ◽  
...  

ABSTRACTInterleukin-18 (IL-18), which was originally called gamma interferon (IFN-γ)-inducing factor, has been shown to play an important role in innate and acquired immune responses. In this study, attenuatedErysipelothrix rhusiopathiaestrains were engineered to produce porcine IL-18 (poIL-18) and evaluated for their potential immunostimulatory effect in animals. Recombinant poIL-18 was successfully expressed in the recombinantE. rhusiopathiaestrains YS-1/IL-18 and KO/IL-18. The culture supernatant of YS-1/IL-18 was confirmed to induce IFN-γ production in murine splenocytesin vitro, and this production was inhibited by incubation with anti-poIL-18 monoclonal antibodies. Furthermore, more IFN-γ production was induced upon stimulation of splenocytes with concanavalin A for splenocytes from mice that were intraperitoneally inoculated with YS-1/IL-18 than for splenocytes from control mice inoculated with the parent strain YS-1. Peritoneal macrophages from mice preinoculated with YS-1/IL-18 exhibited enhanced phagocytosis ofSalmonella entericasubsp.entericaserovar Typhimurium compared with peritoneal macrophages from control mice preinoculated with YS-1. We also confirmed the immunostimulatory effect on humoral immune responses against antigens ofE. rhusiopathiaeandMycoplasma hyopneumoniaein gnotobiotic pigs that were orally preinoculated with KO/IL-18. Thus, these results provide evidence thatE. rhusiopathiaeis a promising vector for the expression of host cytokines and suggest the potential utility ofE. rhusiopathiaevector-encoded cytokines in the activation of host innate and acquired immune responses.


2016 ◽  
Vol 60 (4) ◽  
pp. 2052-2062 ◽  
Author(s):  
Ky V. Hoang ◽  
Heather Curry ◽  
Michael A. Collier ◽  
Hassan Borteh ◽  
Eric M. Bachelder ◽  
...  

ABSTRACTFrancisella tularensiscauses tularemia and is a potential biothreat. Given the limited antibiotics for treating tularemia and the possible use of antibiotic-resistant strains as a biowarfare agent, new antibacterial agents are needed. AR-12 is an FDA-approved investigational new drug (IND) compound that induces autophagy and has shown host-directed, broad-spectrum activityin vitroagainstSalmonella entericaserovar Typhimurium andF. tularensis. We have shown that AR-12 encapsulated within acetalated dextran (Ace-DEX) microparticles (AR-12/MPs) significantly reduces host cell cytotoxicity compared to that with free AR-12, while retaining the ability to controlS.Typhimurium within infected human macrophages. In the present study, the toxicity and efficacy of AR-12/MPs in controlling virulent type AF. tularensisSchuS4 infection were examinedin vitroandin vivo. No significant toxicity of blank MPs or AR-12/MPs was observed in lung histology sections when the formulations were given intranasally to uninfected mice. In histology sections from the lungs of intranasally infected mice treated with the formulations, increased macrophage infiltration was observed for AR-12/MPs, with or without suboptimal gentamicin treatment, but not for blank MPs, soluble AR-12, or suboptimal gentamicin alone. AR-12/MPs dramatically reduced the burden ofF. tularensisin infected human macrophages, in a manner similar to that of free AR-12. However,in vivo, AR-12/MPs significantly enhanced the survival ofF. tularensisSchuS4-infected mice compared to that seen with free AR-12. In combination with suboptimal gentamicin treatment, AR-12/MPs further improved the survival ofF. tularensisSchuS4-infected mice. These studies provide support for Ace-DEX-encapsulated AR-12 as a promising new therapeutic agent for tularemia.


2017 ◽  
Vol 86 (1) ◽  
Author(s):  
John Graham-Brown ◽  
Catherine Hartley ◽  
Helen Clough ◽  
Aras Kadioglu ◽  
Matthew Baylis ◽  
...  

ABSTRACTFasciola hepaticais a parasitic trematode of global importance in livestock. Control strategies reliant on anthelmintics are unsustainable due to the emergence of drug resistance. Vaccines are under development, but efficacies are variable. Evidence from experimental infection suggests that vaccine efficacy may be affected by parasite-induced immunomodulation. Little is known about the immune response toF. hepaticafollowing natural exposure. Hence, we analyzed the immune responses over time in calves naturally exposed toF. hepaticainfection. Cohorts of replacement dairy heifer calves (n= 42) with no prior exposure toF. hepatica, on three commercial dairy farms, were sampled over the course of a grazing season. Exposure was determined through anF. hepatica-specific serum antibody enzyme-linked immunosorbent assay (ELISA) and fluke egg counts. Concurrent changes in peripheral blood leukocyte subpopulations, lymphocyte proliferation, and cytokine responses were measured. Relationships between fluke infection and immune responses were analyzed by using multivariable linear mixed-effect models. All calves from one farm showed evidence of exposure, while cohorts from the remaining two farms remained negative over the grazing season. A type 2 immune response was associated with exposure, with increased interleukin-4 (IL-4) production, IL-5 transcription, and eosinophilia. Suppression of parasite-specific peripheral blood mononuclear cell (PBMC) proliferation was evident, while decreased mitogen-stimulated gamma interferon (IFN-γ) production suggested immunomodulation, which was not restricted to parasite-specific responses. Our findings show that the global immune response is modulated toward a nonproliferative type 2 state following natural challenge withF. hepatica. This has implications in terms of the timing of the administration of vaccination programs and for host susceptibility to coinfecting pathogens.


2014 ◽  
Vol 82 (5) ◽  
pp. 2068-2078 ◽  
Author(s):  
Christopher R. Doyle ◽  
Ji-An Pan ◽  
Patricio Mena ◽  
Wei-Xing Zong ◽  
David G. Thanassi

ABSTRACTFrancisella tularensisis a facultative intracellular, Gram-negative pathogen and the causative agent of tularemia. We previously identified TolC as a virulence factor of theF. tularensislive vaccine strain (LVS) and demonstrated that a ΔtolCmutant exhibits increased cytotoxicity toward host cells and elicits increased proinflammatory responses compared to those of the wild-type (WT) strain. TolC is the outer membrane channel component used by the type I secretion pathway to export toxins and other bacterial virulence factors. Here, we show that the LVS delays activation of the intrinsic apoptotic pathway in a TolC-dependent manner, both during infection of primary macrophages and during organ colonization in mice. The TolC-dependent delay in host cell death is required forF. tularensisto preserve its intracellular replicative niche. We demonstrate that TolC-mediated inhibition of apoptosis is an active process and not due to defects in the structural integrity of the ΔtolCmutant. These findings support a model wherein the immunomodulatory capacity ofF. tularensisrelies, at least in part, on TolC-secreted effectors. Finally, mice vaccinated with the ΔtolCLVS are protected from lethal challenge and clear challenge doses faster than WT-vaccinated mice, demonstrating that the altered host responses to primary infection with the ΔtolCmutant led to altered adaptive immune responses. Taken together, our data demonstrate that TolC is required for temporal modulation of host cell death during infection byF. tularensisand highlight how shifts in the magnitude and timing of host innate immune responses may lead to dramatic changes in the outcome of infection.


2013 ◽  
Vol 81 (12) ◽  
pp. 4626-4634 ◽  
Author(s):  
Ediane B. Silva ◽  
Andrew Goodyear ◽  
Marjorie D. Sutherland ◽  
Nicole L. Podnecky ◽  
Mercedes Gonzalez-Juarrero ◽  
...  

ABSTRACTInfections with the Gram-negative bacteriumBurkholderia pseudomallei(melioidosis) are associated with high mortality, and there is currently no approved vaccine to prevent the development of melioidosis in humans. Infected patients also do not develop protective immunity to reinfection, and some individuals will develop chronic, subclinical infections withB. pseudomallei. At present, our understanding of what constitutes effective protective immunity againstB. pseudomalleiinfection remains incomplete. Therefore, we conducted a study to elucidate immune correlates of vaccine-induced protective immunity against acuteB. pseudomalleiinfection. BALB/c and C57BL/6 mice were immunized subcutaneously with a highly attenuated, Select Agent-excludedpurMdeletion mutant ofB. pseudomallei(strain Bp82) and then subjected to intranasal challenge with virulentB. pseudomalleistrain 1026b. Immunization with Bp82 generated significant protection from challenge withB. pseudomallei, and protection was associated with a significant reduction in bacterial burden in lungs, liver, and spleen of immunized mice. Humoral immunity was critically important for vaccine-induced protection, as mice lacking B cells were not protected by immunization and serum from Bp82-vaccinated mice could transfer partial protection to nonvaccinated animals. In contrast, vaccine-induced protective immunity was found to be independent of both CD4 and CD8 T cells. Tracking studies demonstrated uptake of the Bp82 vaccine strain predominately by neutrophils in vaccine-draining lymph nodes and by smaller numbers of dendritic cells (DC) and monocytes. We concluded that protection following cutaneous immunization with a live attenuatedBurkholderiavaccine strain was dependent primarily on generation of effective humoral immune responses.


2019 ◽  
Vol 201 (7) ◽  
Author(s):  
Philip M. Ireland ◽  
Helen L. Bullifent ◽  
Nicola J. Senior ◽  
Stephanie J. Southern ◽  
Zheng Rong Yang ◽  
...  

ABSTRACTThe highly virulent intracellular pathogenFrancisella tularensisis a Gram-negative bacterium that has a wide host range, including humans, and is the causative agent of tularemia. To identify new therapeutic drug targets and vaccine candidates and investigate the genetic basis ofFrancisellavirulence in the Fischer 344 rat, we have constructed anF. tularensisSchu S4 transposon library. This library consists of more than 300,000 unique transposon mutants and represents a transposon insertion for every 6 bp of the genome. A transposon-directed insertion site sequencing (TraDIS) approach was used to identify 453 genes essential for growthin vitro. Many of these essential genes were mapped to key metabolic pathways, including glycolysis/gluconeogenesis, peptidoglycan synthesis, fatty acid biosynthesis, and the tricarboxylic acid (TCA) cycle. Additionally, 163 genes were identified as required for fitness during colonization of the Fischer 344 rat spleen. Thisin vivoselection screen was validated through the generation of marked deletion mutants that were individually assessed within a competitive index study against the wild-typeF. tularensisSchu S4 strain.IMPORTANCEThe intracellular bacterial pathogenFrancisella tularensiscauses a disease in humans characterized by the rapid onset of nonspecific symptoms such as swollen lymph glands, fever, and headaches.F. tularensisis one of the most infectious bacteria known and following pulmonary exposure can have a mortality rate exceeding 50% if left untreated. The low infectious dose of this organism and concerns surrounding its potential as a biological weapon have heightened the need for effective and safe therapies. To expand the repertoire of targets for therapeutic development, we initiated a genome-wide analysis. This study has identified genes that are important forF. tularensisunderin vitroandin vivoconditions, providing candidates that can be evaluated for vaccine or antibacterial development.


2011 ◽  
Vol 30 (1) ◽  
pp. 1-17 ◽  
Author(s):  
Ferenc Sipos ◽  
Orsolya Galamb ◽  
Barnabás Wichmann ◽  
Tibor Krenács ◽  
Kinga Tóth ◽  
...  

A molecular diagnostic assay using easily accessible peripheral blood would greatly assist in the screening and diagnosis of ulcerative colitis (UC) and Crohn’s disease (CD). Transcriptional profiles in blood/biopsy samples from 12 UC (6/12), 9 CD (5/9), 6 non-inflammatory bowel disease (non-IBD) colitis (6/0), and 11 healthy (11/11) patients were assessed by Affymetrix HGU133Plus2.0 microarrays. Prediction analysis of microarrays, discriminant and ROC analyses were performed, the results were validated by RT-PCR and immunohistochemistry using also an independent set of samples (15 blood samples, 45 biopsies). A set of 13 transcripts was differentially expressed in IBD, non-IBD controls and healthy blood samples (100% specificity and sensitivity). Validated difference was found in 16 transcripts between UC, non-IBD and normal blood, and 4 transcripts between CD, non-IBD and normal samples. UC and CD blood cases could be also distinguished by 5 genes with 100% specificity and sensitivity. Some disease associated alterations in blood transcripts were also detected in colonic tissue. IBD subtypes may be discriminated from non-IBD (diverticulitis, infective and ischemic colitis)in vitrofrom peripheral blood by screening for differential gene expression revealed in this study. Transcriptional profile alterations in peripheral blood can be located in diseased colon.


2012 ◽  
Vol 78 (22) ◽  
pp. 8062-8066 ◽  
Author(s):  
Russell D. Hamilton ◽  
Holly J. Hulsebus ◽  
Samina Akbar ◽  
Jeffrey T. Gray

ABSTRACTSalmonellosis is one of the most common causes of food-borne disease in the United States. Increasing antimicrobial resistance and corresponding increases in virulence present serious challenges. Currently, empirical therapy for invasiveSalmonella entericainfection includes either ceftriaxone or ciprofloxacin (E. L. Hohmann, Clin. Infect. Dis. 32:263–269, 2001). TheblaCMY-2gene confers resistance to ceftriaxone, the antimicrobial of choice for pediatric patients with invasiveSalmonella entericainfections, making these infections especially dangerous (J. M. Whichard et al., Emerg. Infect. Dis. 11:1464–1466, 2005). We hypothesized thatblaCMY-2-positiveSalmonella entericawould exhibit increased MICs to multiple antimicrobial agents and increased resistance gene expression following exposure to ceftriaxone using a protocol that simulated a patient treatmentin vitro. SevenSalmonella entericastrains survived a simulated patient treatmentin vitroand, following treatment, exhibited a significantly increased ceftriaxone MIC. Not only would these isolates be less responsive to further ceftriaxone treatment, but because theblaCMY-2genes are commonly located on large, multidrug-resistant plasmids, increased expression of theblaCMY-2gene may be associated with increased expression of other drug resistance genes located on the plasmid (N. D. Hanson and C. C. Sanders, Curr. Pharm. Des. 5:881–894, 1999). The results of this study demonstrate that a simulated patient treatment with ceftriaxone can alter the expression of antimicrobial resistance genes, includingblaCMY-2andfloRinS. entericaserovar Typhimurium andS. entericaserovar Newport. Additionally, we have shown increased MICs following a simulated patient treatment with ceftriaxone for tetracycline, amikacin, ceftriaxone, and cefepime, all of which have resistance genes commonly located on CMY-2 plasmids. The increases in resistance observed are significant and may have a negative impact on both public health and antimicrobial resistance ofSalmonella enterica.


2014 ◽  
Vol 80 (18) ◽  
pp. 5854-5865 ◽  
Author(s):  
Maria H. Daleke-Schermerhorn ◽  
Tristan Felix ◽  
Zora Soprova ◽  
Corinne M. ten Hagen-Jongman ◽  
David Vikström ◽  
...  

ABSTRACTOuter membrane vesicles (OMVs) are spherical nanoparticles that naturally shed from Gram-negative bacteria. They are rich in immunostimulatory proteins and lipopolysaccharide but do not replicate, which increases their safety profile and renders them attractive vaccine vectors. By packaging foreign polypeptides in OMVs, specific immune responses can be raised toward heterologous antigens in the context of an intrinsic adjuvant. Antigens exposed at the vesicle surface have been suggested to elicit protection superior to that from antigens concealed inside OMVs, but hitherto robust methods for targeting heterologous proteins to the OMV surface have been lacking. We have exploited our previously developed hemoglobin protease (Hbp) autotransporter platform for display of heterologous polypeptides at the OMV surface. One, two, or three of theMycobacterium tuberculosisantigens ESAT6, Ag85B, and Rv2660c were targeted to the surface ofEscherichia coliOMVs upon fusion to Hbp. Furthermore, a hypervesiculating ΔtolRΔtolAderivative of attenuatedSalmonella entericaserovar Typhimurium SL3261 was generated, enabling efficient release and purification of OMVs decorated with multiple heterologous antigens, exemplified by theM. tuberculosisantigens and epitopes fromChlamydia trachomatismajor outer membrane protein (MOMP). Also, we showed that delivery ofSalmonellaOMVs displaying Ag85B to antigen-presenting cellsin vitroresults in processing and presentation of an epitope that is functionally recognized by Ag85B-specific T cell hybridomas. In conclusion, the Hbp platform mediates efficient display of (multiple) heterologous antigens, individually or combined within one molecule, at the surface of OMVs. Detection of antigen-specific immune responses upon vesicle-mediated delivery demonstrated the potential of our system for vaccine development.


2018 ◽  
Vol 200 (17) ◽  
Author(s):  
Olga Ramaniuk ◽  
Martin Převorovský ◽  
Jiří Pospíšil ◽  
Dragana Vítovská ◽  
Olga Kofroňová ◽  
...  

ABSTRACTThe σIsigma factor fromBacillus subtilisis a σ factor associated with RNA polymerase (RNAP) that was previously implicated in adaptation of the cell to elevated temperature. Here, we provide a comprehensive characterization of this transcriptional regulator. By transcriptome sequencing (RNA-seq) of wild-type (wt) and σI-null strains at 37°C and 52°C, we identified ∼130 genes affected by the absence of σI. Further analysis revealed that the majority of these genes were affected indirectly by σI. The σIregulon, i.e., the genes directly regulated by σI, consists of 16 genes, of which eight (thedhbandykuoperons) are involved in iron metabolism. The involvement of σIin iron metabolism was confirmed phenotypically. Next, we set up anin vitrotranscription system and defined and experimentally validated the promoter sequence logo that, in addition to −35 and −10 regions, also contains extended −35 and −10 motifs. Thus, σI-dependent promoters are relatively information rich in comparison with most other promoters. In summary, this study supplies information about the least-explored σ factor from the industrially important model organismB. subtilis.IMPORTANCEIn bacteria, σ factors are essential for transcription initiation. Knowledge about their regulons (i.e., genes transcribed from promoters dependent on these σ factors) is the key for understanding how bacteria cope with the changing environment and could be instrumental for biotechnologically motivated rewiring of gene expression. Here, we characterize the σIregulon from the industrially important model Gram-positive bacteriumBacillus subtilis. We reveal that σIaffects expression of ∼130 genes, of which 16 are directly regulated by σI, including genes encoding proteins involved in iron homeostasis. Detailed analysis of promoter elements then identifies unique sequences important for σI-dependent transcription. This study thus provides a comprehensive view on this underexplored component of theB. subtilistranscription machinery.


Sign in / Sign up

Export Citation Format

Share Document