scholarly journals Macrophage Inflammatory Protein 1α/CCL3 Is Required for Clearance of an Acute Klebsiella pneumoniae Pulmonary Infection

2001 ◽  
Vol 69 (10) ◽  
pp. 6364-6369 ◽  
Author(s):  
Dennis M. Lindell ◽  
Theodore J. Standiford ◽  
Peter Mancuso ◽  
Zachary J. Leshen ◽  
Gary B. Huffnagle

ABSTRACT The objective of these studies was to determine the role of macrophage inflammatory protein 1α/CCL3 in pulmonary host defense during Klebsiella pneumoniae infection. Following intratracheal inoculation, 7-day survival of CCL3−/− mice was less than 10%, compared to 60% for CCL3+/+ mice. Survival of CCR5−/− mice was equivalent to that of controls, indicating that the enhanced susceptibility of CCL3−/− mice to K. pneumoniae is mediated via another CCL3 receptor, presumably CCR1. At day 3, CFU burden in the lungs of CCL3−/− mice was 800-fold higher than in CCL3+/+ mice, demonstrating that CCL3 is critical for control of bacterial growth in the lung. Surprisingly, CCL3−/− mice had no differences in the recruitment of monocytes/macrophages and even showed enhanced neutrophil recruitment at days 1, 2, and 3 postinfection, compared to CCL3+/+ mice. Therefore, the defect in clearance was not due to insufficient recruitment of leukocytes. No significant differences in cytokine levels of monocyte chemoattractant protein 1 (MCP-1), interleukin 12, gamma interferon, or tumor necrosis factor alpha in lung lavages were found between CCL3+/+ and CCL3−/− mice. CCL3−/− alveolar macrophages were found to have significantly lower phagocytic activity toward K. pneumoniae than CCL3+/+alveolar macrophages. These findings demonstrate that CCL3 production is critical for activation of alveolar macrophages to control the pulmonary growth of the gram-negative bacterium K. pneumoniae.

2005 ◽  
Vol 73 (2) ◽  
pp. 820-827 ◽  
Author(s):  
Donatella Pietrella ◽  
Cristina Corbucci ◽  
Stefano Perito ◽  
Giovanni Bistoni ◽  
Anna Vecchiarelli

ABSTRACT Our previous data show that mannoproteins (MPs) from Cryptococcus neoformans are able to induce protective responses against both C. neoformans and Candida albicans. Here we provide evidence that MPs foster maturation and activation of human dendritic cells (DCs). Maturation was evaluated by the ability of MPs to facilitate expression of costimulatory molecules such as CD40, CD86, CD83, and major histocompatibility complex classes I and II and to inhibit receptors such as CD14, CD16, and CD32. Activation of DCs was measured by the capacity of MPs to promote interleukin-12 and tumor necrosis factor alpha secretion. DC-induced maturation and interleukin-12 induction are largely mediated by engagement of mannose receptors and presume MP internalization and degradation. DC activation leads to IκBα phosphorylation, which is necessary for nuclear factor κB transmigration into the nucleus. MP-loaded DCs are efficient stimulators of T cells and show a remarkable capacity to promote CD4 and CD8 proliferation. In conclusion, we have evidenced a novel regulatory role of MPs that promotes their candidacy as a vaccine against fungi.


2009 ◽  
Vol 77 (9) ◽  
pp. 3686-3695 ◽  
Author(s):  
Hany M. Ibrahim ◽  
Hiroshi Bannai ◽  
Xuenan Xuan ◽  
Yoshifumi Nishikawa

ABSTRACT Toxoplasma gondii modulates pro- and anti-inflammatory responses to regulate parasite multiplication and host survival. Pressure from the immune response causes the conversion of tachyzoites into slowly dividing bradyzoites. The regulatory mechanisms involved in this switch are poorly understood. The aim of this study was to investigate the immunomodulatory role of T. gondii cyclophilin 18 (TgCyp18) in macrophages and the consequences of the cellular responses on the conversion machinery. Recombinant TgCyp18 induced the production of nitric oxide (NO), interleukin-12 (IL-12), and tumor necrosis factor alpha through its binding with cysteine-cysteine chemokine receptor 5 (CCR5) and the production of gamma interferon and IL-6 in a CCR5-independent manner. Interestingly, the treatment of macrophages with TgCyp18 resulted in the inhibition of parasite growth and an enhancement of the conversion into bradyzoites via NO in a CCR5-dependent manner. In conclusion, T. gondii possesses sophisticated mechanisms to manipulate host cell responses in a TgCyp18-mediated process.


2009 ◽  
Vol 88 (8) ◽  
pp. 757-761 ◽  
Author(s):  
K. Jinno ◽  
T. Takahashi ◽  
K. Tsuchida ◽  
E. Tanaka ◽  
K. Moriyama

Wound healing is a well-orchestrated complex process leading to the repair of injured tissues. It is suggested that transforming growth factor (TGF)-β/Smad3 signaling is involved in wound healing. The purpose of this study was to investigate the role of TGF-β/Smad3 signaling in palatal wound healing in Smad3-deficient (Smad3−/−) mice. Histological examination showed that wound closure was accelerated by the proliferation of epithelium and dermal cells in Smad3−/− mice compared with wild-type (WT) mice. Macrophage/monocyte infiltration at wounded regions in Smad3−/− mice was decreased in parallel with the diminished production of TGF-β1, monocyte chemoattractant protein-1, and macrophage inflammatory protein-1α compared with WT mice. Fibrocytes, expressing hematopoietic surface marker and fibroblast products, were recruited and produced α-smooth-muscle actin in WT mice, but were not observed in Smad3−/− mice. These results suggest that TGF-β/Smad3 signaling may play an important role in the regulation of palatal wound healing.


2004 ◽  
Vol 72 (10) ◽  
pp. 6176-6180 ◽  
Author(s):  
Chikara Nakasone ◽  
Kazuyoshi Kawakami ◽  
Tomoaki Hoshino ◽  
Yusuke Kawase ◽  
Koichi Yokota ◽  
...  

ABSTRACT We report that clearance of Pseudomonas aeruginosa, accumulation of neutrophils, and synthesis of tumor necrosis factor alpha and macrophage inflammatory protein 2 in the infected lung were not largely different in interleukin-18 (IL-18) knockout or transgenic mice compared with control mice. Our results suggest a limited role for IL-18 in the host defense against P. aeruginosa.


2010 ◽  
Vol 78 (11) ◽  
pp. 4912-4921 ◽  
Author(s):  
Giuliana Giribaldi ◽  
Mauro Prato ◽  
Daniela Ulliers ◽  
Valentina Gallo ◽  
Evelin Schwarzer ◽  
...  

ABSTRACT Hemozoin (HZ)-fed monocytes are exposed to strong oxidative stress, releasing large amounts of peroxidation derivatives with subsequent impairment of numerous functions and overproduction of proinflammatory cytokines. However, the histopathology at autopsy of tissues from patients with severe malaria showed abundant HZ in Kupffer cells and other tissue macrophages, suggesting that functional impairment and cytokine production are not accompanied by cell death. The aim of the present study was to clarify the role of HZ in cell survival, focusing on the qualitative and temporal expression patterns of proinflammatory and antiapoptotic molecules. Immunocytochemical and flow cytometric analyses showed that the long-term viability of human monocytes was unaffected by HZ. Short-term analysis by macroarray of a complete panel of cytokines and real-time reverse transcription (RT)-PCR experiments showed that HZ immediately induced interleukin-1β (IL-1β) gene expression, followed by transcription of eight additional chemokines (IL-8, epithelial cell-derived neutrophil-activating peptide 78 [ENA-78], growth-regulated oncogene α [GROα], GROβ, GROγ, macrophage inflammatory protein 1α [MIP-1α], MIP-1β, and monocyte chemoattractant protein 1 [MCP-1]), two cytokines (tumor necrosis factor alpha [TNF-α] and IL-1receptor antagonist [IL-1RA]), and the cytokine/chemokine-related proteolytic enzyme matrix metalloproteinase 9 (MMP-9). Furthermore, real-time RT-PCR showed that 15-HETE, a potent lipoperoxidation derivative generated by HZ through heme catalysis, recapitulated the effects of HZ on the expression of four of the chemokines. Intermediate-term investigation by Western blotting showed that HZ increased expression of HSP27, a chemokine-related protein with antiapoptotic properties. Taken together, the present data suggest that apoptosis of HZ-fed monocytes is prevented through a cascade involving 15-HETE-mediated upregulation of IL-1β transcription, rapidly sustained by chemokine, TNF-α, MMP-9, and IL-1RA transcription and upregulation of HSP27 protein expression.


2011 ◽  
Vol 79 (4) ◽  
pp. 1638-1646 ◽  
Author(s):  
Natália B. Carvalho ◽  
Fernanda S. Oliveira ◽  
Fernanda V. Durães ◽  
Leonardo A. de Almeida ◽  
Manuela Flórido ◽  
...  

ABSTRACTTo investigate the role of Toll-like receptor 9 (TLR9) in innate immunity toMycobacteriumavium, TLR9, TLR2, and MyD88 knockout (KO) mice were infected with this bacterium. Bacterial burdens were higher in the spleens, livers, and lungs of infected TLR9 KO mice than in those of C57BL/6 mice, indicating that TLR9 is required for efficient control ofM.aviuminfection. However, TLR9 KO or TLR2 KO spleen cells displayed normalM.avium-induced tumor necrosis factor alpha (TNF-α) and gamma interferon (IFN-γ) responses. This finding was confirmed by determining the number of splenic CD4+T cells producing IFN-γ by flow cytometry. Furthermore, TLR2 and MyD88, but not TLR9, played a major role in interleukin-12 and TNF-α production byM.avium-infected macrophages and dendritic cells (DCs). We also found that major histocompatibility complex class II molecule expression on DCs is regulated by TLR2 and MyD88 signaling but not by TLR9. Finally, lack of TLR9, TLR2, or MyD88 reduced the numbers of macrophages, epithelioid cells, and lymphocytes inM.avium-induced granulomas but only MyD88 deficiency affected the number of liver granulomas. In summary, our data demonstrated that the involvement of TLR9 in the control ofM.aviuminfection is not related to the induction of Th1 responses.


1998 ◽  
Vol 66 (1) ◽  
pp. 65-69 ◽  
Author(s):  
J. K. Brieland ◽  
D. G. Remick ◽  
M. L. LeGendre ◽  
N. C. Engleberg ◽  
J. C. Fantone

ABSTRACT The in vivo role of endogenous interleukin 12 (IL-12) in modulating intrapulmonary growth of Legionella pneumophila was assessed by using a murine model of replicative L. pneumophila lung infection. Intratracheal inoculation of A/J mice with virulent bacteria (106 L. pneumophilacells per mouse) resulted in induction of IL-12, which preceded clearance of the bacteria from the lung. Inhibition of endogenous IL-12 activity, via administration of IL-12 neutralizing antiserum, resulted in enhanced intrapulmonary growth of the bacteria within 5 days postinfection (compared to untreated L. pneumophila-infected mice). Because IL-12 has previously been shown to modulate the expression of cytokines, including gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), and IL-10, which regulate L. pneumophila growth, immunomodulatory effects of endogenous IL-12 on intrapulmonary levels of these cytokines during replicative L. pneumophila lung infection were subsequently assessed. Results of these experiments demonstrated that TNF-α activity was significantly lower, while protein levels of IFN-γ and IL-10 in the lung were similar, in L. pneumophila-infected mice administered IL-12 antiserum, compared to similarly infected untreated mice. Together, these results demonstrate that IL-12 is critical for resolution of replicativeL. pneumophila lung infection and suggest that regulation of intrapulmonary growth of L. pneumophila by endogenous IL-12 is mediated, at least in part, by TNF-α.


2022 ◽  
pp. 153537022110669
Author(s):  
Hassan Ahmed ◽  
Urooj Amin ◽  
Xiaolun Sun ◽  
Demetrius R Pitts ◽  
Yunbo Li ◽  
...  

Lipopolysaccharide (LPS), also known as endotoxin, can trigger septic shock, a severe form of inflammation-mediated sepsis with a very high mortality rate. However, the precise mechanisms underlying this endotoxin remain to be defined and detoxification of LPS is yet to be established. Macrophages, a type of immune cells, initiate a key response responsible for the cascade of events leading to the surge in inflammatory cytokines and immunopathology of septic shock. This study was undertaken to determine whether the LPS-induced inflammation in macrophage cells could be ameliorated via CDDO-IM (2-cyano-3,12 dioxooleana-1,9 dien-28-oyl imidazoline), a novel triterpenoid compound. Data from this study show that gene expression levels of inflammatory cytokine genes such as interleukin-1 beta (IL-1β), interleukin-8 (IL-8), tumor necrosis factor alpha (TNF-α), and monocyte chemoattractant protein-1 (MCP-1) were considerably increased by treatment with LPS in macrophages differentiated from ML-1 monocytes. Interestingly, LPS-induced increase in expression of pro-inflammatory cytokine levels is reduced by CDDO-IM. In addition, endogenous upregulation of a series of antioxidant molecules by CDDO-IM provided protection against LPS-induced cytotoxicity in macrophages. LPS-mediated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) transcriptional activity was also noted to decrease upon treatment with CDDO-IM in macrophages suggesting the involvement of the NF-κB signaling. This study would contribute to improve our understanding of the detoxification of endotoxin LPS by the triterpenoid CDDO-IM.


Sign in / Sign up

Export Citation Format

Share Document