scholarly journals Construction, Genotypic and Phenotypic Characterization, and Immunogenicity of Attenuated ΔguaBA Salmonella enterica Serovar Typhi Strain CVD 915

2001 ◽  
Vol 69 (8) ◽  
pp. 4734-4741 ◽  
Author(s):  
Jin Yuang Wang ◽  
Marcela F. Pasetti ◽  
Fernando R. Noriega ◽  
Richard J. Anderson ◽  
Steven S. Wasserman ◽  
...  

ABSTRACT A promising live attenuated typhoid vaccine candidate strain for mucosal immunization was developed by introducing a deletion in theguaBA locus of pathogenic Salmonella entericaserovar Typhi strain Ty2. The resultant ΔguaBA mutant, serovar Typhi CVD 915, has a gene encoding resistance to arsenite replacing the deleted sequence within guaBA, thereby providing a marker to readily identify the vaccine strain. CVD 915 was compared in in vitro and in vivo assays with wild-type strain Ty2, licensed live oral typhoid vaccine strain Ty21a, or attenuated serovar Typhi vaccine strain CVD 908-htrA (harboring mutations inaroC, aroD, and htrA). CVD 915 was less invasive than CVD 908-htrA in tissue culture and was more crippled in its ability to proliferate after invasion. In mice inoculated intraperitoneally with serovar Typhi and hog gastric mucin (to estimate the relative degree of attenuation), the 50% lethal dose of CVD 915 (7.7 × 107 CFU) was significantly higher than that of wild-type Ty2 (1.4 × 102 CFU) and was only slightly lower than that of Ty21a (1.9 × 108CFU). Strong serum O and H antibody responses were recorded in mice inoculated intranasally with CVD 915, which were higher than those elicited by Ty21a and similar to those stimulated by CVD 908-htrA. CVD 915 also elicited potent proliferative responses in splenocytes from immunized mice stimulated with serovar Typhi antigens. Used as a live vector, CVD 915(pTETlpp) elicited high titers of serum immunoglobulin G anti-fragment C. These encouraging preclinical data pave the way for phase 1 clinical trials with CVD 915.

2001 ◽  
Vol 69 (12) ◽  
pp. 7413-7418 ◽  
Author(s):  
Tahar van der Straaten ◽  
Angela van Diepen ◽  
Kitty Kwappenberg ◽  
Sjaak van Voorden ◽  
Kees Franken ◽  
...  

ABSTRACT Upon contact with host cells, the intracellular pathogenSalmonella enterica serovar Typhimurium promotes its uptake, targeting, and survival in intracellular niches. In this process, the bacterium evades the microbicidal effector mechanisms of the macrophage, including oxygen intermediates. This study reports the phenotypic and genotypic characterization of an S. enterica serovar Typhimurium mutant that is hypersusceptible to superoxide. The susceptible phenotype is due to a MudJ insertion-inactivation of a previously undescribedSalmonella gene designated sspJ that is located between 54.4 and 64 min of the Salmonellachromosome and encodes a 392-amino-acid protein. In vivo, upon intraperitoneal injection of 104 to 107bacteria in C3H/HeN and 101 to 104 bacteria in BALB/c mice, the mutant strain was less virulent than the wild type. Consistent with this finding, during the first hour after ingestion by macrophage-like J774 and RAW264.7 cells in vitro, the intracellular killing of the strain carrying sspJ::MudJ is enhanced fivefold over that of wild-type microorganisms. Wild-type salmonellae displayed significant intracellular replication during the first 24 h after uptake, but sspJ::MudJ mutants failed to do so. This phenotype could be restored to that of the wild type by sspJ complementation. The SspJ protein is found in the cytoplasmic membrane and periplasmic space. Amino acid sequence homology analysis did reveal a leader sequence and putative pyrroloquinoline quinone-binding domains, but no putative protein function. We excluded the possibility that SspJ is a scavenger of superoxide or has superoxide dismutase activity.


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. e13524-e13524
Author(s):  
S. M. Rudman ◽  
C. Comins ◽  
D. Mukherji ◽  
M. Coffey ◽  
K. Mettinger ◽  
...  

e13524 Background: Reovirus has minimal pathogenicity in humans but selectively replicates in cells with activated Ras. Wild- type reovirus serotype 3 Dearing strain (Reolysin) has selective antitumor activity in vitro, in murine models, and after systemic delivery in humans in phase 1 trials. Synergistic tumour kill has been observed combining reovirus with taxanes in a range of cancer cell lines and in vivo. Methods: Patients were treated in an open-label, dose-escalating, phase I trial and received 3- weekly 75mg/m2 docetaxel i.v. and reovirus i.v. (day 1–5 of first week inclusive). Reovirus was administered at a starting dose of 3x109 tissue culture infectious dose (TCID50) and then increased to 1 x 1010 and 3 x 1010 TCID50. Primary endpoints were to determine the maximum tolerated dose (MTD), dose limiting toxicity (DLT) and to recommend a dose and schedule for future investigation. Secondary endpoints were to evaluate pharmacokinetics, neutralizing antibody development, cell- mediated immune response and anti-tumour activity. Results: 17 patients were treated (15 males, median age 60 years). No MTD has been reached. DLT's observed were G4 neutropenia (and a recurrent perianal abcess) and G3 rise in AST. Other toxicities observed were fatigue, hypotension and neutropenic sepsis. At present, 5 patients remain on treatment. We have observed 2 partial responses (breast and gastric carcinoma) and 10 patients had stable disease as best response. Conclusions: Reovirus is well tolerated when administered in combination with intravenous docetaxel, with predictable toxicity observed. The recommended dose has been defined at 3x1010 TCID50 and phase II studies are planned. Objective radiological evidence of anticancer activity for this combination has been observed. [Table: see text]


2015 ◽  
Vol 12 (113) ◽  
pp. 20150702 ◽  
Author(s):  
Richard Dybowski ◽  
Olivier Restif ◽  
Alexandre Goupy ◽  
Duncan J. Maskell ◽  
Piero Mastroeni ◽  
...  

Intravenous inoculation of Salmonella enterica serovar Typhimurium into mice is a prime experimental model of invasive salmonellosis. The use of wild-type isogenic tagged strains (WITS) in this system has revealed that bacteria undergo independent bottlenecks in the liver and spleen before establishing a systemic infection. We recently showed that those bacteria that survived the bottleneck exhibited enhanced growth when transferred to naive mice. In this study, we set out to disentangle the components of this in vivo adaptation by inoculating mice with WITS grown either in vitro or in vivo . We developed an original method to estimate the replication and killing rates of bacteria from experimental data, which involved solving the probability-generating function of a non-homogeneous birth–death–immigration process. This revealed a low initial mortality in bacteria obtained from a donor animal. Next, an analysis of WITS distributions in the livers and spleens of recipient animals indicated that in vivo -passaged bacteria started spreading between organs earlier than in vitro -grown bacteria. These results further our understanding of the influence of passage in a host on the fitness and virulence of Salmonella enterica and represent an advance in the power of investigation on the patterns and mechanisms of host–pathogen interactions.


2004 ◽  
Vol 72 (10) ◽  
pp. 5824-5831 ◽  
Author(s):  
Carlos A. Garcia ◽  
Michael Martin ◽  
Suzanne M. Michalek

ABSTRACT The purpose of the present study was to evaluate the ability of an attenuated Salmonella enterica serovar Typhimurium vaccine strain to up-regulate B7-1 and B7-2 on antigen-presenting cells and to examine the functional roles these costimulatory molecules play in mediating immune responses to Salmonella and to an expressed cloned antigen, the saliva-binding region (SBR) of antigen I/II. In vitro stimulation of B cells (B220+), macrophages (CD11b+), and dendritic cells (CD11c+) with S. enterica serovar Typhimurium induced an up-regulation of B7-2 and, especially, B7-1 expression. The in vivo functional roles of B7-1, B7-2, and B7-1/2 were evaluated in BALB/c wild-type and B7-1, B7-2, and B7-1/2 knockout (KO) mice following intranasal immunization with the Salmonella expressing the cloned SBR. Differential requirements for B7-1 and B7-2 were observed upon primary and secondary immunizations. Compared to wild-type controls, B7-1 and B7-2 KO mice had reduced mucosal and systemic anti-Salmonella antibody responses after a single immunization, while only B7-1 KO mice exhibited suppressed anti-Salmonella antibody responses following the second immunization. Mucosal and systemic antibody responses to SBR were reduced following the primary immunization, whereas a compensatory role for either B7-1 or B7-2 was observed after the second immunization. B7-1/2 double KO mice failed to induce detectable levels of mucosal or systemic immunoglobulin A (IgA) or IgG antibody responses to either Salmonella or SBR. These findings demonstrate that B7-1 and B7-2 can play distinct as well as redundant roles for mediating mucosal and systemic antibody responses, which are likely dependent upon the nature of the antigen.


2002 ◽  
Vol 70 (6) ◽  
pp. 3080-3084 ◽  
Author(s):  
Bhavna G. Gordhan ◽  
Debbie A. Smith ◽  
Heidi Alderton ◽  
Ruth A. McAdam ◽  
Gregory J. Bancroft ◽  
...  

ABSTRACT A mutant of Mycobacterium tuberculosis defective in the metabolism of l-arginine was constructed by allelic exchange mutagenesis. The argF mutant strain required exogenous l-arginine for growth in vitro, and in the presence of 0.96 mM l-arginine, it achieved a growth rate and cell density in stationary phase comparable to those of the wild type. The mutant strain was also able to grow in the presence of high concentrations of argininosuccinate, but its auxotrophic phenotype could not be rescued by l-citrulline, suggesting that the ΔargF::hyg mutation exerted a polar effect on the downstream argG gene but not on argH. The mutant strain displayed reduced virulence in immunodeficient SCID mice and was highly attenuated in immunocompetent DBA/2 mice, suggesting that l-arginine availability is restricted in vivo.


2019 ◽  
Author(s):  
Satoshi Taniguchi ◽  
Tomoki Yoshikawa ◽  
Masayuki Shimojima ◽  
Shuetsu Fukushi ◽  
Takeshi Kurosu ◽  
...  

ABSTRACTLymphocytic choriomeningitis virus (LCMV) is a prototypic arenavirus. The viral genome consists of two RNA segments, L and S. The 5’- and 3’-termini of both L and S segments are highly conserved among arenaviruses. These regions consist of 19 complementary base pairs and are essential for viral genome replication and transcription. In addition to these 19 nucleotides in the 5’- and 3’-termini, there are untranslated regions (UTRs) composed of 58 and 41 nucleotide residues in the 5’ and 3’ UTRs, respectively, in the LCMV S segment. Their functional roles, however, have yet to be elucidated. In this study, a reverse genetics and a minigenome system for the LCMV strain WE were established and used to analyze the function of these regions. The results obtained from these analyses, plus RNA secondary structure prediction, revealed that not only these 19 nucleotides but also the 20th–40th and 20th–38th nucleotides located downstream of the 19 nucleotides in the 5’- and 3’-termini, respectively, are heavily involved in viral genome replication and transcription. Furthermore, the introduction of mutations in these regions depressed viral propagation in vitro and enhanced attenuation in vivo. Conversely, recombinant LCMVs (rLCMVs), which had various deletions in the other UTRs, propagated as well as wild-type LCMV in vitro but were attenuated in vivo. Most mice previously infected with rLCMVs with mutated UTRs, when further infected with a lethal dose of wild-type LCMV, survived. These results suggest that rLCMVs with mutated UTRs could be candidates for an LCMV vaccine.IMPORTANCEThe function of untranslated regions (UTRs) of the arenavirus genome has not well been studied except for the 19 nucleotides of the 5’- and 3’-termini. In this study the function of the UTRs of the LCMV S segment was analyzed. It was found that not only the 19 nucleotides of the 5’- and 3’-termini but also the 20th–40th and 20th–38th nucleotides located downstream of the 19 nucleotides in the 5’- and 3’-termini, respectively, were involved in viral genome replication and transcription. Furthermore, other UTRs in the S segment were involved in virulence in vivo. The introduction of mutations to these regions makes it possible to establish attenuated LCMV and potentially develop LCMV vaccine candidates.


1998 ◽  
Vol 42 (7) ◽  
pp. 1756-1761 ◽  
Author(s):  
K. Venkateswarlu ◽  
Diane E. Kelly ◽  
Nigel J. Manning ◽  
Steven L. Kelly

ABSTRACT The phenotype of a strain of Saccharomyces cerevisiaecontaining a disruption of the gene encoding NADPH cytochrome P-450 oxidoreductase (CPR) was quantified biochemically and microbiologically, as were those of various transformants of this strain after expression of native CPR, cytochrome P-45051 (CYP51), and a fusion protein of CYP51-CPR (FUS). Only a 4-fold decrease in ergosterol biosynthesis was observed for the cpr strain, but ketoconazole sensitivity increased 200-fold, indicating hypersensitivity to the alternative electron donor system incpr strains. Both phenotypes could be reversed in transformants expressing the CPR and FUS, indicating the availability of the CPR in FUS as well as the expressed native CPR for monoxygenase-associated reactions. The complementation of function was observed both in vitro and in vivo for the monoxygenases squalene epoxidase, CYP51, and CYP61 in the ergosterol biosynthesis pathway with which CPR is coupled. Overexpression of CYP51 and FUS produced different levels of ketoconazole resistance in wild-type cells, indicating that the availability of CPR may limit the potential of overproduction of CYP51 as a mechanism of resistance to azole antifungal agents.


2005 ◽  
Vol 73 (1) ◽  
pp. 459-463 ◽  
Author(s):  
Gary Rowley ◽  
Andrew Stevenson ◽  
Jan Kormanec ◽  
Mark Roberts

ABSTRACT The alternative sigma factor (RpoE σE) enables Salmonella enterica serovar Typhimurium to adapt to stressful conditions, such as oxidative stress, nutrient deprivation, and growth in mammalian tissues. Infection of mice by Salmonella serovar Typhimurium also requires σE. In Escherichia coli, activation of the σE pathway is dependent on proteolysis of the anti-sigma factor RseA and is initiated by DegS. DegS is also important in order for E. coli to cause extraintestinal infection in mice. We constructed a degS mutant of the serovar Typhimurium strain SL1344 and compared its behavior in vitro and in vivo with those of its wild-type (WT) parent and an isogenic rpoE mutant. Unlike E. coli degS strains, the Salmonella serovar Typhimurium degS strain grew as well as the WT strain at 42°C. The degS mutant survived very poorly in murine macrophages in vitro and was highly attenuated compared with the WT strain for both the oral and parenteral routes of infection in mice. However, the degS mutant was not as attenuated as the serovar Typhimurium rpoE mutant: 100- to 1,000-fold more degS bacteria than rpoE bacteria were present in the livers and spleens of mice 24 h after intraperitoneal challenge. In most assays, the rpoE mutant was more severely affected than the degS mutant and a σE-dependent reporter gene was more active in the degS mutant than the rpoE strain. These findings indicate that degS is important for activation of the σE pathway in serovar Typhimurium but that alternative pathways for σE activation probably exist.


2006 ◽  
Vol 188 (21) ◽  
pp. 7592-7599 ◽  
Author(s):  
Chi-Ling Tseng ◽  
Hui-Ju Chen ◽  
Gwo-Chyuan Shaw

ABSTRACTA gene that codes for a novel intracellular poly-3-hydroxybutyrate (PHB) depolymerase has now been identified in the genome ofBacillus thuringiensissubsp.israelensisATCC 35646. This gene, previously annotated as a hypothetical 3-oxoadipate enol-lactonase (PcaD) gene and now designatedphaZ, encodes a protein that shows no significant similarity with any known PHB depolymerase. Purified His-tagged PhaZ could efficiently degrade trypsin-activated native PHB granules as well as artificial amorphous PHB granules and release 3-hydroxybutyrate monomer as a hydrolytic product, but it could not hydrolyze denatured semicrystalline PHB. In contrast, purified His-tagged PcaD ofPseudomonas putidawas unable to degrade trypsin-activated native PHB granules and artificial amorphous PHB granules. TheB. thuringiensisPhaZ was inactive againstp-nitrophenylpalmitate, tributyrin, and triolein. Sonication supernatants of the wild-typeB. thuringiensiscells exhibited a PHB-hydrolyzing activity in vitro, whereas those prepared from aphaZmutant lost this activity. ThephaZmutant showed a higher PHB content than the wild type at late stationary phase of growth in a nutrient-rich medium, indicating that this PhaZ can function as a PHB depolymerase in vivo. PhaZ contains a lipase box-like sequence (G-W-S102-M-G) but lacks a signal peptide. A purified His-tagged S102A variant had lost the PHB-hydrolyzing activity. Taken together, these results indicate thatB. thuringiensisharbors a new type of intracellular PHB depolymerase.


1995 ◽  
Vol 15 (8) ◽  
pp. 4331-4316 ◽  
Author(s):  
P A Crawford ◽  
Y Sadovsky ◽  
K Woodson ◽  
S L Lee ◽  
J Milbrandt

The immediate-early gene NGFI-B encodes an orphan nuclear receptor that binds DNA as a monomer and activates transcription through a canonical response element (NBRE). NGFI-B is expressed under basal conditions and in response to external stimuli in many mammalian tissues. In particular, NGFI-B expression is dramatically elevated in the adrenal cortex in response to stress and in Y1 adrenocortical cells in response to adrenocorticotropin. NGFI-B activates transcription through an NBRE of the gene encoding 21-hydroxylase (P450c21) in Y1 cells. Steroidogenic factor 1 (SF-1), a homolog of NGFI-B, also activates the P450c21 promoter. To examine the influence of these factors on P450c21 expression in vivo and the function of the hypothalamic-pituitary-adrenocortical axis as a whole, we generated NGFI-B (-/-) mice. These mice thrive and reproduce normally and maintain normal basal adrenocorticotropin, corticosterone, and P450c21 mRNA levels. In response to increases in adrenocorticotropin, NGFI-B (-/-) and wild-type mice demonstrated equivalent increases in serum corticosterone levels. Furthermore, and in contrast to in vitro results, no increases in P450c21 mRNA levels were observed in response to increases in adrenocorticotropin in NGFI-B (-/-) or wild-type mice. While SF-1 mRNA levels were not increased with increased steroidogenic demand, adrenal expression of Nurr1, a close homolog of NGFI-B, was induced to a greater extent by lipopolysaccharide in NGFI-B (-/-) mice than in wild-type mice. Finally, when the administration of dexamethasone for suppression was stopped, P450c21 mRNA and serum corticosterone levels recovered at the same rate in wild-type and NGFI-B (-/-) mice. Thus, while NGFI-B appears poised to affect the structure and function of the adrenal gland, the gland functions normally in its absence, suggesting that other factors, including Nurr1 and SF-1, are sufficient to drive P450c21 expression in mice and maintain normal steroidogenesis.


Sign in / Sign up

Export Citation Format

Share Document