NADPH Cytochrome P-450 Oxidoreductase and Susceptibility to Ketoconazole

1998 ◽  
Vol 42 (7) ◽  
pp. 1756-1761 ◽  
Author(s):  
K. Venkateswarlu ◽  
Diane E. Kelly ◽  
Nigel J. Manning ◽  
Steven L. Kelly

ABSTRACT The phenotype of a strain of Saccharomyces cerevisiaecontaining a disruption of the gene encoding NADPH cytochrome P-450 oxidoreductase (CPR) was quantified biochemically and microbiologically, as were those of various transformants of this strain after expression of native CPR, cytochrome P-45051 (CYP51), and a fusion protein of CYP51-CPR (FUS). Only a 4-fold decrease in ergosterol biosynthesis was observed for the cpr strain, but ketoconazole sensitivity increased 200-fold, indicating hypersensitivity to the alternative electron donor system incpr strains. Both phenotypes could be reversed in transformants expressing the CPR and FUS, indicating the availability of the CPR in FUS as well as the expressed native CPR for monoxygenase-associated reactions. The complementation of function was observed both in vitro and in vivo for the monoxygenases squalene epoxidase, CYP51, and CYP61 in the ergosterol biosynthesis pathway with which CPR is coupled. Overexpression of CYP51 and FUS produced different levels of ketoconazole resistance in wild-type cells, indicating that the availability of CPR may limit the potential of overproduction of CYP51 as a mechanism of resistance to azole antifungal agents.

Author(s):  
Adrian Rafael Murillo-de-Ozores ◽  
Alejandro Rodriguez-Gama ◽  
Hector Carbajal-Contreras ◽  
Gerardo Gamba ◽  
Maria Castaneda-Bueno

With No Lysine (K) kinase 4 (WNK4) belongs to a serine-threonine kinase family characterized by the atypical positioning of its catalytic lysine. Despite the fact that WNK4 has been found in many tissues, the majority of its study has revolved around its function in the kidney, specifically as a positive regulator of the thiazide-sensitive NaCl cotransporter (NCC) in the distal convoluted tubule (DCT) of the nephron. This is explained by the description of gain-of-function mutations in the gene encoding WNK4 that cause Familial Hyperkalemic Hypertension (FHHt). This disease is mainly driven by increased downstream activation of the Ste20-related Proline Alanine Rich Kinase (SPAK)/Oxidative Stress Responsive Kinase 1 (OSR1)-NCC pathway, which increases salt reabsorption in the DCT and indirectly impairs renal K+ secretion. Here, we review the large volume of information that has accumulated about different aspects of WNK4 function. We first review the knowledge on WNK4 structure and enumerate the functional domains and motifs that have been characterized. Then, we discuss WNK4 physiological functions based on the information obtained from in vitro studies and from a diverse set of genetically modified mouse models with altered WNK4 function. We then review in vitro and in vivo evidence on the different levels of regulation of WNK4. Finally, we go through the evidence that has suggested how different physiological conditions act through WNK4 to modulate NCC activity.


1975 ◽  
Vol 53 (5) ◽  
pp. 873-879 ◽  
Author(s):  
Jacob V. Aranda ◽  
Kenneth W. Renton

The effect of glucagon on the components of the hepatic microsomal electron transport chain (NADPH oxidase, NADPH cytochrome c reductase (EC 1.6.2.4), cytochrome P-450, and NADPH cytochrome P-450 reductase), and on two representative oxidative pathways (aminopyrine N-demethylation, a type I substrate oxidation; and aniline p-hydroxylation, a type II substrate oxidation) was determined. Microsomes from rats pretreated with glucagon (300 μg/kg per day for 3 days) showed a significant decrease in NADPH oxidation and in aminopyrine N-demethylation with a prolonged hexobarbital sleeping time, and a significant increase in aniline p-hydroxylation. Microsomes from rats pretreated with a lower dose of glucagon (30 μg/kg per day for 3 days) showed a significant decrease in the microsomal N-demethylation of aminopyrine. Glucagon had no effect when added in vitro to microsomes, suggesting that the in vivo effects of glucagon are mediated indirectly in the intact animal.


2012 ◽  
Vol 56 (4) ◽  
pp. 1960-1968 ◽  
Author(s):  
L. A. Vale-Silva ◽  
A. T. Coste ◽  
F. Ischer ◽  
J. E. Parker ◽  
S. L. Kelly ◽  
...  

ABSTRACTThe inactivation ofERG3, a gene encoding sterol Δ5,6-desaturase (essential for ergosterol biosynthesis), is a known mechanism ofin vitroresistance to azole antifungal drugs in the human pathogenCandida albicans. ERG3inactivation typically results in loss of filamentation and attenuated virulence in animal models of disseminated candidiasis. In this work, we identified aC. albicansclinical isolate (VSY2) with high-level resistance to azole drugsin vitroand an absence of ergosterol but normal filamentation. Sequencing ofERG3in VSY2 revealed a double base deletion leading to a premature stop codon and thus a nonfunctional enzyme. The reversion of the double base deletion in the mutant allele (erg3-1) restored ergosterol biosynthesis and full fluconazole susceptibility in VSY2, confirming thatERG3inactivation was the mechanism of azole resistance. Additionally, the replacement of bothERG3alleles byerg3-1in the wild-type strain SC5314 led to the absence of ergosterol and to fluconazole resistance without affecting filamentation. In a mouse model of disseminated candidiasis, the clinicalERG3mutant VSY2 produced kidney fungal burdens and mouse survival comparable to those obtained with the wild-type control. Interestingly, while VSY2 was resistant to fluconazole bothin vitroandin vivo, theERG3-derived mutant of SC5314 was resistant onlyin vitroand was less virulent than the wild type. This suggests that VSY2 compensated for thein vivofitness defect ofERG3inactivation by a still unknown mechanism(s). Taken together, our results provide evidence that contrary to previous reports inactivation ofERG3does not necessarily affect filamentation and virulence.


2006 ◽  
Vol 188 (21) ◽  
pp. 7592-7599 ◽  
Author(s):  
Chi-Ling Tseng ◽  
Hui-Ju Chen ◽  
Gwo-Chyuan Shaw

ABSTRACTA gene that codes for a novel intracellular poly-3-hydroxybutyrate (PHB) depolymerase has now been identified in the genome ofBacillus thuringiensissubsp.israelensisATCC 35646. This gene, previously annotated as a hypothetical 3-oxoadipate enol-lactonase (PcaD) gene and now designatedphaZ, encodes a protein that shows no significant similarity with any known PHB depolymerase. Purified His-tagged PhaZ could efficiently degrade trypsin-activated native PHB granules as well as artificial amorphous PHB granules and release 3-hydroxybutyrate monomer as a hydrolytic product, but it could not hydrolyze denatured semicrystalline PHB. In contrast, purified His-tagged PcaD ofPseudomonas putidawas unable to degrade trypsin-activated native PHB granules and artificial amorphous PHB granules. TheB. thuringiensisPhaZ was inactive againstp-nitrophenylpalmitate, tributyrin, and triolein. Sonication supernatants of the wild-typeB. thuringiensiscells exhibited a PHB-hydrolyzing activity in vitro, whereas those prepared from aphaZmutant lost this activity. ThephaZmutant showed a higher PHB content than the wild type at late stationary phase of growth in a nutrient-rich medium, indicating that this PhaZ can function as a PHB depolymerase in vivo. PhaZ contains a lipase box-like sequence (G-W-S102-M-G) but lacks a signal peptide. A purified His-tagged S102A variant had lost the PHB-hydrolyzing activity. Taken together, these results indicate thatB. thuringiensisharbors a new type of intracellular PHB depolymerase.


2001 ◽  
Vol 69 (8) ◽  
pp. 4734-4741 ◽  
Author(s):  
Jin Yuang Wang ◽  
Marcela F. Pasetti ◽  
Fernando R. Noriega ◽  
Richard J. Anderson ◽  
Steven S. Wasserman ◽  
...  

ABSTRACT A promising live attenuated typhoid vaccine candidate strain for mucosal immunization was developed by introducing a deletion in theguaBA locus of pathogenic Salmonella entericaserovar Typhi strain Ty2. The resultant ΔguaBA mutant, serovar Typhi CVD 915, has a gene encoding resistance to arsenite replacing the deleted sequence within guaBA, thereby providing a marker to readily identify the vaccine strain. CVD 915 was compared in in vitro and in vivo assays with wild-type strain Ty2, licensed live oral typhoid vaccine strain Ty21a, or attenuated serovar Typhi vaccine strain CVD 908-htrA (harboring mutations inaroC, aroD, and htrA). CVD 915 was less invasive than CVD 908-htrA in tissue culture and was more crippled in its ability to proliferate after invasion. In mice inoculated intraperitoneally with serovar Typhi and hog gastric mucin (to estimate the relative degree of attenuation), the 50% lethal dose of CVD 915 (7.7 × 107 CFU) was significantly higher than that of wild-type Ty2 (1.4 × 102 CFU) and was only slightly lower than that of Ty21a (1.9 × 108CFU). Strong serum O and H antibody responses were recorded in mice inoculated intranasally with CVD 915, which were higher than those elicited by Ty21a and similar to those stimulated by CVD 908-htrA. CVD 915 also elicited potent proliferative responses in splenocytes from immunized mice stimulated with serovar Typhi antigens. Used as a live vector, CVD 915(pTETlpp) elicited high titers of serum immunoglobulin G anti-fragment C. These encouraging preclinical data pave the way for phase 1 clinical trials with CVD 915.


1995 ◽  
Vol 15 (8) ◽  
pp. 4331-4316 ◽  
Author(s):  
P A Crawford ◽  
Y Sadovsky ◽  
K Woodson ◽  
S L Lee ◽  
J Milbrandt

The immediate-early gene NGFI-B encodes an orphan nuclear receptor that binds DNA as a monomer and activates transcription through a canonical response element (NBRE). NGFI-B is expressed under basal conditions and in response to external stimuli in many mammalian tissues. In particular, NGFI-B expression is dramatically elevated in the adrenal cortex in response to stress and in Y1 adrenocortical cells in response to adrenocorticotropin. NGFI-B activates transcription through an NBRE of the gene encoding 21-hydroxylase (P450c21) in Y1 cells. Steroidogenic factor 1 (SF-1), a homolog of NGFI-B, also activates the P450c21 promoter. To examine the influence of these factors on P450c21 expression in vivo and the function of the hypothalamic-pituitary-adrenocortical axis as a whole, we generated NGFI-B (-/-) mice. These mice thrive and reproduce normally and maintain normal basal adrenocorticotropin, corticosterone, and P450c21 mRNA levels. In response to increases in adrenocorticotropin, NGFI-B (-/-) and wild-type mice demonstrated equivalent increases in serum corticosterone levels. Furthermore, and in contrast to in vitro results, no increases in P450c21 mRNA levels were observed in response to increases in adrenocorticotropin in NGFI-B (-/-) or wild-type mice. While SF-1 mRNA levels were not increased with increased steroidogenic demand, adrenal expression of Nurr1, a close homolog of NGFI-B, was induced to a greater extent by lipopolysaccharide in NGFI-B (-/-) mice than in wild-type mice. Finally, when the administration of dexamethasone for suppression was stopped, P450c21 mRNA and serum corticosterone levels recovered at the same rate in wild-type and NGFI-B (-/-) mice. Thus, while NGFI-B appears poised to affect the structure and function of the adrenal gland, the gland functions normally in its absence, suggesting that other factors, including Nurr1 and SF-1, are sufficient to drive P450c21 expression in mice and maintain normal steroidogenesis.


1987 ◽  
Vol 7 (5) ◽  
pp. 1602-1611 ◽  
Author(s):  
M Nonet ◽  
C Scafe ◽  
J Sexton ◽  
R Young

We have isolated a yeast conditional mutant which rapidly ceases synthesis of mRNA when subjected to the nonpermissive temperature. This mutant (rpb1-1) was constructed by replacing the wild-type chromosomal copy of the gene encoding the largest subunit of RNA polymerase II with one mutagenized in vitro. The rapid cessation of mRNA synthesis in vivo and the lack of RNA polymerase II activity in crude extracts indicate that the mutant possesses a functionally defective, rather than an assembly-defective, RNA polymerase II. The shutdown in mRNA synthesis in the rpb1-1 mutant has pleiotropic effects on the synthesis of other RNAs and on the heat shock response. This mutant provides direct evidence that the RPB1 protein has a functional role in mRNA synthesis.


2004 ◽  
Vol 186 (12) ◽  
pp. 3991-3999 ◽  
Author(s):  
E. Pojidaeva ◽  
V. Zinchenko ◽  
S. V. Shestakov ◽  
A. Sokolenko

ABSTRACT The sll1703 gene, encoding an Arabidopsis homologue of the thylakoid membrane-associated SppA peptidase, was inactivated by interposon mutagenesis in Synechocystis sp. strain PCC 6803. Upon acclimation from a light intensity of 50 to 150 μE m−2 s−1, the mutant preserved most of its phycobilisome content, whereas the wild-type strain developed a bleaching phenotype due to the loss of about 40% of its phycobiliproteins. Using in vivo and in vitro experiments, we demonstrate that the ΔsppA1 strain does not undergo the cleavage of the LR 33 and LCM 99 linker proteins that develops in the wild type exposed to increasing light intensities. We conclude that a major contribution to light acclimation under a moderate light regime in cyanobacteria originates from an SppA1-mediated cleavage of phycobilisome linker proteins. Together with changes in gene expression of the major phycobiliproteins, it contributes an additional mechanism aimed at reducing the content in phycobilisome antennae upon acclimation to a higher light intensity.


1997 ◽  
Vol 41 (6) ◽  
pp. 1364-1368 ◽  
Author(s):  
D W Denning ◽  
K Venkateswarlu ◽  
K L Oakley ◽  
M J Anderson ◽  
N J Manning ◽  
...  

Invasive aspergillosis is an increasingly frequent opportunistic infection in immunocompromised patients. Only two agents, amphotericin B and itraconazole, are licensed for therapy. Itraconazole acts through inhibition of a P-450 enzyme undertaking sterol 14alpha demethylation. In vitro resistance in Aspergillus fumigatus to itraconazole correlated with in vivo outcome has not been previously described. For three isolates (AF72, AF90, and AF91) of A. fumigatus from two patients with invasive aspergillosis itraconazole MICs were elevated. A neutropenic murine model was used to establish the validity of the MICs. The isolates were typed by random amplification of polymorphic DNA. Analysis of sterols, inhibition of cell-free sterol biosynthesis from [14C] mevalonate, quantitation of P-450 content, and [3H]itraconazole concentration in mycelial pellets were used to determine the mechanisms of resistance. The MICs for the three resistant isolates were >16 microg/ml. In vitro resistance was confirmed in vivo for all three isolates. Molecular typing showed the isolates from the two patients to be genetically distinct. Compared to the susceptible isolate from patient 1, AF72 had a reduced ergosterol content, greater quantities of sterol intermediates, a similar susceptibility to itraconazole in cell-free ergosterol biosynthesis, and a reduced intracellular [3H]itraconazole concentration. In contrast, AF91 and AF92 had slightly higher ergosterol and lower intermediate sterol concentrations, fivefold increased resistance in cell-free systems to the effect of itraconazole on sterol 14alpha demethylation, and intracellular [3H] itraconazole concentrations found in susceptible isolates. Resistance to itraconazole in A. fumigatus is detectable in vitro and is present in wild-type isolates, and at least two mechanisms of resistance are responsible.


Genetics ◽  
1988 ◽  
Vol 119 (3) ◽  
pp. 517-526
Author(s):  
R Gudenus ◽  
S Mariotte ◽  
A Moenne ◽  
A Ruet ◽  
S Memet ◽  
...  

Abstract A 18.4-kb fragment of the yeast genome containing the gene of the largest subunit of RNA polymerase C (RPC160) was cloned by hybridization to a previously isolated fragment of that gene. RPC160 maps on chromosome XV, tightly linked but not allelic to the essential gene TSM8740. Temperature sensitive (ts) mutant alleles were constructed by in vitro mutagenesis with NaHSO3 and substituted for the wild-type allele on the chromosome. Four of them were unambiguously identified as rpc160 mutants by failure to complement a fully defective mutation rpc160::URA3. The faithful transcription of a yeast tRNA gene by mutant cell-free extracts is strongly reduced as compared to wild-type. In vivo, the rpc160 mutations specifically affect the synthesis of tRNA in a temperature sensitive way, with comparatively little effect on the synthesis of 5S rRNA and no effect on 5.8S rRNA. An unlinked mutation (pcil-3) suppresses the temperature sensitive phenotype of the rpc160-41 mutation.


Sign in / Sign up

Export Citation Format

Share Document