scholarly journals Role ofCaulobacterCell Surface Structures in Colonization of the Air-Liquid Interface

2019 ◽  
Vol 201 (18) ◽  
Author(s):  
Aretha Fiebig

ABSTRACTIn aquatic environments,Caulobacterspp. can be found at the boundary between liquid and air known as the neuston. I report an approach to study temporal features ofCaulobacter crescentuscolonization and pellicle biofilm development at the air-liquid interface and have defined the role of cell surface structures in this process. At this interface,C. crescentusinitially forms a monolayer of cells bearing a surface adhesin known as the holdfast. When excised from the liquid surface, this monolayer strongly adheres to glass. The monolayer subsequently develops into a three-dimensional structure that is highly enriched in clusters of stalked cells known as rosettes. As this pellicle film matures, it becomes more cohesive and less adherent to a glass surface. A mutant strain lacking a flagellum does not efficiently reach the surface, and strains lacking type IV pili exhibit defects in organization of the three-dimensional pellicle. Strains unable to synthesize the holdfast fail to accumulate at the boundary between air and liquid and do not form a pellicle. Phase-contrast images support a model whereby the holdfast functions to trapC. crescentuscells at the air-liquid boundary. Unlike the holdfast, neither the flagellum nor type IV pili are required forC. crescentusto partition to the air-liquid interface. While it is well established that the holdfast enables adherence to solid surfaces, this study provides evidence that the holdfast has physicochemical properties that allow partitioning of nonmotile mother cells to the air-liquid interface and facilitate colonization of this microenvironment.IMPORTANCEIn aquatic environments, the boundary at the air interface is often highly enriched with nutrients and oxygen. Colonization of this niche likely confers a significant fitness advantage in many cases. This study provides evidence that the cell surface adhesin known as a holdfast enablesCaulobacter crescentusto partition to and colonize the air-liquid interface. Additional surface structures, including the flagellum and type IV pili, are important determinants of colonization and biofilm formation at this boundary. Considering that holdfast-like adhesins are broadly conserved inCaulobacterspp. and other members of the diverse classAlphaproteobacteria, these surface structures may function broadly to facilitate colonization of air-liquid boundaries in a range of ecological contexts, including freshwater, marine, and soil ecosystems.

2019 ◽  
Author(s):  
Aretha Fiebig

AbstractIn aquatic environments,Caulobacterspp. are often present at the boundary between liquid and air known as the neuston. I report an approach to study temporal features ofCaulobacter crescentuscolonization and pellicle biofilm development at the air-liquid interface, and have defined the role of cell surface structures in this process. At this interface,C. crescentusinitially forms a monolayer of cells bearing a surface adhesin known as the holdfast. When excised from the liquid surface, this monolayer strongly adheres to glass. The monolayer subsequently develops into a three-dimensional structure that is highly enriched in clusters of stalked cells known as rosettes. As this pellicle film matures, it becomes more cohesive and less adherent to a glass surface. A mutant strain lacking a flagellum does not efficiently reach the surface, and strains lacking type IV pili exhibit defects in organization of the three-dimensional pellicle. Strains unable to synthesize holdfast fail to accumulate at the boundary between air and liquid and do not form a pellicle. Phase contrast images support a model whereby the holdfast functions to trapC. crescentuscells at the air-liquid boundary. Unlike the holdfast, neither the flagellum nor type IV pili are required forC. crescentusto partition to the air-liquid interface. While it is well established that the holdfast enables adherence to solid surfaces, this study provides evidence that the holdfast has physicochemical properties required for partitioning of non-motile mother cells to the air-liquid interface, which facilitates colonization of this microenvironment.ImportanceIn aquatic environments the boundary at the air interface is often highly enriched with nutrients and oxygen. Colonization of this niche likely confers a significant fitness advantage in many cases. This study provides evidence that the cell surface adhesin known as a holdfast enablesCaulobacter crescentusto partition to and colonize the air-liquid interface. Additional surface structures including the flagellum and type IV pili are important determinants of colonization and biofilm formation at this boundary. Considering that holdfast-like adhesins are broadly conserved inCaulobacterspp. and other members of the diverse classAlphaproteobacteria, these surface structures may function broadly to facilitate colonization of air-liquid boundaries in a range of ecological contexts including freshwater, marine, and soil ecosystems.


mBio ◽  
2020 ◽  
Vol 11 (5) ◽  
Author(s):  
Linda I. Hu ◽  
Shaohui Yin ◽  
Egon A. Ozer ◽  
Lee Sewell ◽  
Saima Rehman ◽  
...  

ABSTRACT Neisseria gonorrhoeae relies on type IV pili (T4p) to promote colonization of their human host and to cause the sexually transmitted infection gonorrhea. This organelle cycles through a process of extension and retraction back into the bacterial cell. Through a genetic screen, we identified the NGO0783 locus of N. gonorrhoeae strain FA1090 as containing a gene encoding a protein required to stabilize the type IV pilus in its extended, nonretracted conformation. We have named the gene tfpC and the protein TfpC. Deletion of tfpC produces a nonpiliated colony morphology, and immuno-transmission electron microscopy confirms that the pili are lost in the ΔtfpC mutant, although there is some pilin detected near the bacterial cell surface. A copy of the tfpC gene expressed from a lac promoter restores pilus expression and related phenotypes. A ΔtfpC mutant shows reduced levels of pilin protein, but complementation with a tfpC gene restored pilin to normal levels. Bioinformatic searches show that there are orthologues in numerous bacterial species, but not all type IV pilin-expressing bacteria contain orthologous genes. Coevolution and nuclear magnetic resonance (NMR) analysis indicates that TfpC contains an N-terminal transmembrane helix, a substantial extended/unstructured region, and a highly charged C-terminal coiled-coil domain. IMPORTANCE Most bacterial species express one or more extracellular organelles called pili/fimbriae that are required for many properties of each bacterial cell. The Neisseria gonorrhoeae type IV pilus is a major virulence and colonization factor for the sexually transmitted infection gonorrhea. We have discovered a new protein of Neisseria gonorrhoeae called TfpC that is required to maintain type IV pili on the bacterial cell surface. There are similar proteins found in other members of the Neisseria genus and many other bacterial species important for human health.


2019 ◽  
Vol 201 (18) ◽  
Author(s):  
Courtney K. Ellison ◽  
Douglas B. Rusch ◽  
Yves V. Brun

ABSTRACT Surface appendages, such as flagella and type IV pili, mediate a broad range of bacterial behaviors, including motility, attachment, and surface sensing. While many species harbor both flagella and type IV pili, little is known about how or if their syntheses are coupled. Here, we show that deletions of genes encoding different flagellum machinery components result in a reduction of pilus synthesis in Caulobacter crescentus. First, we show that different flagellar mutants exhibit different levels of sensitivity to a pilus-dependent phage and that fewer cells within populations of flagellar mutants make pili. Furthermore, we find that single cells within flagellar mutant populations produce fewer pili per cell. We demonstrate that these gene deletions result in reduced transcription of pilus-associated genes and have a slight but significant effect on general transcription profiles. Finally, we show that the decrease in pilus production is due to a reduction in the pool of pilin subunits that are polymerized into pilus fibers. These data demonstrate that mutations in flagellar gene components not only affect motility but also can have considerable and unexpected consequences for other aspects of cell biology. IMPORTANCE Most bacterial species synthesize surface-exposed appendages that are important for environmental interactions and survival under diverse conditions. It is often assumed that these appendages act independently of each other and that mutations in either system can be used to assess functionality in specific processes. However, we show that mutations in flagellar genes can impact the production of type IV pili, as well as alter general RNA transcriptional profiles compared to a wild-type strain. These data demonstrate that seemingly simple mutations can broadly affect cell-regulatory networks.


2018 ◽  
Author(s):  
Rey Allen ◽  
Bruce E. Rittmann ◽  
Roy Curtiss

AbstractPhototrophic biofilms are key to nutrient cycling in natural environments and bioremediation technologies, but few studies describe biofilm formation by pure (axenic) cultures of a phototrophic microbe. The cyanobacteriumSynechocystissp. PCC 6803 (hereafterSynechocystis) is a model micro-organism for the study of oxygenic photosynthesis and biofuel production. We report here that wild-type (WT)Synechocystiscaused extensive biofilm formation in a 2000 liter outdoor non-axenic photobioreactor under conditions attributed to nutrient limitation. We developed a biofilm assay and found that axenicSynechocystisforms biofilms of cells and extracellular material, but only when induced by an environmental signal, such as by reducing the concentration of growth medium BG11. Mutants lacking cell surface structures, namely type IV pili and the S-layer, do not form biofilms.To further characterize the molecular mechanisms of cell-cell binding bySynechocystis, we also developed a rapid (8 hour) axenic aggregation assay. Mutants lacking Type IV pili were unable to aggregate, but mutants lacking a homolog to Wza, a protein required for Type 1 exopolysaccharide export inEscherichia coli, had a super-binding phenotype. In WT cultures, 1.2x BG11 induced aggregation to the same degree as 0.8x BG11. Overall, our data support that Wza-dependant exopolysaccharide is essential to maintain stable, uniform suspensions of WTSynechocystiscells in unmodified growth medium, and this mechanism is counter-acted in a pili-dependent manner under altered BG11 concentrations.ImportanceMicrobes can exist as suspensions of individual cells in liquids, and also commonly form multicellular communities attached to surfaces. Surface-attached communities, called biofilms, can confer antibiotic resistance to pathogenic bacteria during infections, and establish food webs for global nutrient cycling in the environment. Phototrophic biofilm formation is one of the earliest phenotypes visible in the fossil record, dating back over 3 billion years. Despite the importance and ubiquity of phototrophic biofilms, most of what we know about the molecular mechanisms, genetic regulation, and environmental signals of biofilm formation comes from studies of heterotrophic bacteria. We aim to help bridge this knowledge gap by developing new assays forSynechocystis, a phototrophic cyanobacterium used to study oxygenic phototsynthesis and biofuel production. With the aid of these new assays, we contribute to the development ofSynechocystisas a model organism for the study of axenic phototrophic biofilm formation.


2021 ◽  
Author(s):  
Jennifer L. Chlebek ◽  
Triana N. Dalia ◽  
Nicolas Biais ◽  
Ankur B. Dalia

ABSTRACTBacteria utilize dynamic appendages called type IV pili (T4P) to interact with their environment and mediate a wide variety of functions. Pilus extension is mediated by an extension ATPase motor, commonly called PilB, in all T4P. Pilus retraction, however, can either occur with the aid of an ATPase motor, or in the absence of a retraction motor. While much effort has been devoted to studying motor-dependent retraction, the mechanism and regulation of motor-independent retraction remains poorly characterized. We have previously demonstrated that Vibrio cholerae competence T4P undergo motor-independent retraction in the absence of the dedicated retraction ATPases PilT and PilU. Here, we utilize this model system to characterize the factors that influence motor-independent retraction. We find that freshly extended pili frequently undergo motor-independent retraction, but if these pili fail to retract immediately, they remain statically extended on the cell surface. Importantly, we show that these static pili can still undergo motor-dependent retraction via tightly regulated ectopic expression of PilT, suggesting that these T4P are not broken, but simply cannot undergo motor-independent retraction. Through additional genetic and biophysical characterization of pili, we suggest that pilus filaments undergo conformational changes during dynamic extension and retraction. We propose that only some conformations, like those adopted by freshly extended pili, are capable of undergoing motor-independent retraction. Together, these data highlight the versatile mechanisms that regulate T4P dynamic activity and provide additional support for the long-standing hypothesis that motor-independent retraction occurs via spontaneous depolymerization.SIGNIFICANCEExtracellular pilus fibers are critical to the virulence and persistence of many pathogenic bacteria. A crucial function for most pili is the dynamic ability to extend and retract from the cell surface. Inhibiting this dynamic pilus activity represents an attractive approach for therapeutic interventions, however, a detailed mechanistic understanding of this process is currently lacking. Here, we use the competence pilus of Vibrio cholerae to study how pili retract in the absence of dedicated retraction motors. Our results reveal a novel regulatory mechanism of pilus retraction that is an inherent property of the external pilus filament. Thus, understanding the conformational changes that pili adopt under different conditions may be critical for the development of novel therapeutics that aim to target the dynamic activity of these structures.


Author(s):  
José Andrés Medrano-Félix ◽  
Cristóbal Chaidez ◽  
Kristina D. Mena ◽  
María del Socorro Soto-Galindo ◽  
Nohelia Castro-del Campo

2006 ◽  
Vol 188 (13) ◽  
pp. 4851-4860 ◽  
Author(s):  
Sophie de Bentzmann ◽  
Marianne Aurouze ◽  
Geneviève Ball ◽  
Alain Filloux

ABSTRACT Several subclasses of type IV pili have been described according to the characteristics of the structural prepilin subunit. Whereas molecular mechanisms of type IVa pilus assembly have been well documented for Pseudomonas aeruginosa and involve the PilD prepilin peptidase, no type IVb pili have been described in this microorganism. One subclass of type IVb prepilins has been identified as the Flp prepilin subfamily. Long and bundled Flp pili involved in tight adherence have been identified in Actinobacillus actinomycetemcomitans, for which assembly was due to a dedicated machinery encoded by the tad-rcp locus. A similar flp-tad-rcp locus containing flp, tad, and rcp gene homologues was identified in the P. aeruginosa genome. The function of these genes has been investigated, which revealed their involvement in the formation of extracellular Flp appendages. We also identified a gene (designated by open reading frame PA4295) outside the flp-tad-rcp locus, that we named fppA, encoding a novel prepilin peptidase. This is the second enzyme of this kind found in P. aeruginosa; however, it appears to be truncated and is similar to the C-terminal domain of the previously characterized PilD peptidase. In this study, we show that FppA is responsible for the maturation of the Flp prepilin and belongs to the aspartic acid protease family. We also demonstrate that FppA is required for the assembly of cell surface appendages that we called Flp pili. Finally, we observed an Flp-dependent bacterial aggregation process on the epithelial cell surface and an increased biofilm phenotype linked to Flp pilus assembly.


mBio ◽  
2013 ◽  
Vol 4 (5) ◽  
Author(s):  
Salim T. Islam ◽  
Paul D. W. Eckford ◽  
Michelle L. Jones ◽  
Timothy Nugent ◽  
Christine E. Bear ◽  
...  

ABSTRACTWzx flippases are crucial for bacterial cell surface polysaccharide assembly as they transport undecaprenyl pyrophosphate-linked sugar repeat units from the cytoplasmic to the periplasmic leaflets of the inner membrane (IM) for final assembly. Our recently reported three-dimensional (3D) model structure of Wzx fromPseudomonas aeruginosaPAO1 (WzxPa) displayed a cationic internal vestibule and functionally essential acidic amino acids within transmembrane segment bundles. Herein, we examined the intrinsic transport function of WzxPafollowing its purification and reconstitution in phospholipid liposomes. WzxPawas capable of mediating anion flux, consistent with its cationic interior. This flux was electrogenic and modified by extraliposomal pH. Mutation of the above-mentioned acidic residues (E61, D269, and D359) reduced proton (H+)-modified anion flux, showing the role of these amino acid side chains in H+-dependent transport. Wzx also mediated acidification of the proteoliposome interior in the presence of an outward anion gradient. These results indicate H+-dependent gating and H+uptake by WzxPaand allow for the first H+-dependent antiport mechanism to be proposed for lipid-linked oligosaccharide translocation across the bacterial IM.IMPORTANCEMany bacterial cell surface polysaccharides that are important for survival and virulence are synthesized at the periplasmic leaflet of the inner membrane (IM) using precursors produced in the cytoplasm. Wzx flippases are responsible for translocation of lipid-linked sugar repeat units across the IM and had been previously suggested to simply facilitate passive substrate diffusion. Through our characterization of purified Wzx in a reconstitution system described herein, we have observed protein-dependent intrinsic transport producing a change in the electrical potential of the system, with H+identified as the coupling ion. These results provide the first evidence for coupled (i.e., secondary active) transport by these proteins and, in conjunction with structural data, allow for an antiport mechanism to be proposed for the directed transport of lipid-linked sugar substrates across the IM. These findings bring our understanding of lipid-linked polysaccharide transporter proteins more in line with the efflux pumps to which they are evolutionarily related.


2015 ◽  
Vol 81 (18) ◽  
pp. 6158-6165 ◽  
Author(s):  
Tiffany C. Williams ◽  
Mesrop Ayrapetyan ◽  
James D. Oliver

ABSTRACTThe human pathogenVibrio vulnificusis the leading cause of seafood-related deaths in the United States. Strains are genotyped on the basis of alleles that correlate with isolation source, with clinical (C)-genotype strains being more often implicated in disease and environmental (E)-genotype strains being more frequently isolated from oysters and estuarine waters. Previously, we have shown that the ecologically distinct C- and E-genotype strains ofV. vulnificusdisplay different degrees of chitin attachment, with C-genotype strains exhibiting reduced attachment relative to their E-genotype strain counterparts. We identified type IV pili to be part of the molecular basis for this observed genotypic variance, as E-genotype strains exhibit higher levels of expression of these genes than C-genotype strains. Here, we used a C-genotype quorum-sensing (QS) mutant to demonstrate that quorum sensing is a negative regulator of type IV pilus expression, which results in decreased chitin attachment. Furthermore, calcium depletion reduced E-genotype strain attachment to chitin, which suggests that calcium is necessary for proper functioning of the type IV pili in E-genotype strains. We also found that starvation or dormancy can alter the efficiency of chitin attachment, which has significant implications for the environmental persistence ofV. vulnificus. With the increasing incidence of wound infections caused byV. vulnificus, we investigated a subset of E-genotype strains isolated from human wound infections and discovered that they attached to chitin in a manner more similar to that of C-genotype strains. This study enhances our understanding of the molecular and physical factors that mediate chitin attachment inV. vulnificus, providing insight into the mechanisms that facilitate the persistence of this pathogen in its native environment.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2784
Author(s):  
Mh Busra Fauzi ◽  
Zahra Rashidbenam ◽  
Aminuddin Bin Saim ◽  
Ruszymah Binti Hj Idrus

Three-dimensional (3D) in vitro skin models have been widely used for cosmeceutical and pharmaceutical applications aiming to reduce animal use in experiment. This study investigate capability of ovine tendon collagen type I (OTC-I) sponge suitable platform for a 3D in vitro skin model using co-cultured skin cells (CC) containing human epidermal keratinocytes (HEK) and human dermal fibroblasts (HDF) under submerged (SM) and air-liquid interface (ALI) conditions. Briefly, the extracted OTC-I was freeze-dried and crosslinked with genipin (OTC-I_GNP) and carbodiimide (OTC-I_EDC). The gross appearance, physico-chemical characteristics, biocompatibility and growth profile of seeded skin cells were assessed. The light brown and white appearance for the OTC-I_GNP scaffold and other groups were observed, respectively. The OTC-I_GNP scaffold demonstrated the highest swelling ratio (~1885%) and water uptake (94.96 ± 0.14%). The Fourier transformation infrared demonstrated amide A, B and I, II and III which represent collagen type I. The microstructure of all fabricated sponges presented a similar surface roughness with the presence of visible collagen fibers and a heterogenous porous structure. The OTC-I_EDC scaffold was more toxic and showed the lowest cell attachment and proliferation as compared to other groups. The micrographic evaluation revealed that CC potentially formed the epidermal- and dermal-like layers in both SM and ALI that prominently observed with OTC-I_GNP compared to others. In conclusion, these results suggest that OTC_GNP could be used as a 3D in vitro skin model under ALI microenvironment.


Sign in / Sign up

Export Citation Format

Share Document