scholarly journals Autotransporters Drive Biofilm Formation and Autoaggregation in the Diderm Firmicute Veillonella parvula

2020 ◽  
Vol 202 (21) ◽  
Author(s):  
Nathalie Béchon ◽  
Alicia Jiménez-Fernández ◽  
Jerzy Witwinowski ◽  
Emilie Bierque ◽  
Najwa Taib ◽  
...  

ABSTRACT The Negativicutes are a clade of the Firmicutes that have retained the ancestral diderm character and possess an outer membrane. One of the best studied Negativicutes, Veillonella parvula, is an anaerobic commensal and opportunistic pathogen inhabiting complex human microbial communities, including the gut and the dental plaque microbiota. Whereas the adhesion and biofilm capacities of V. parvula are expected to be crucial for its maintenance and development in these environments, studies of V. parvula adhesion have been hindered by the lack of efficient genetic tools to perform functional analyses in this bacterium. Here, we took advantage of a recently described naturally transformable V. parvula isolate, SKV38, and adapted tools developed for the closely related Clostridia spp. to perform random transposon and targeted mutagenesis to identify V. parvula genes involved in biofilm formation. We show that type V secreted autotransporters, typically found in diderm bacteria, are the main determinants of V. parvula autoaggregation and biofilm formation and compete with each other for binding either to cells or to surfaces, with strong consequences for V. parvula biofilm formation capacity. The identified trimeric autotransporters have an original structure compared to classical autotransporters identified in Proteobacteria, with an additional C-terminal domain. We also show that inactivation of the gene coding for a poorly characterized metal-dependent phosphohydrolase HD domain protein conserved in the Firmicutes and their closely related diderm phyla inhibits autotransporter-mediated biofilm formation. This study paves the way for further molecular characterization of V. parvula interactions with other bacteria and the host within complex microbiota environments. IMPORTANCE Veillonella parvula is an anaerobic commensal and opportunistic pathogen whose ability to adhere to surfaces or other bacteria and form biofilms is critical for it to inhabit complex human microbial communities such as the gut and oral microbiota. Although the adhesive capacity of V. parvula has been previously described, very little is known about the underlying molecular mechanisms due to a lack of genetically amenable Veillonella strains. In this study, we took advantage of a naturally transformable V. parvula isolate and newly adapted genetic tools to identify surface-exposed adhesins called autotransporters as the main molecular determinants of adhesion in this bacterium. This work therefore provides new insights on an important aspect of the V. parvula lifestyle, opening new possibilities for mechanistic studies of the contribution of biofilm formation to the biology of this major commensal of the oral-digestive tract.

2020 ◽  
Author(s):  
Nathalie Béchon ◽  
Alicia Jiménez-Fernández ◽  
Jerzy Witwinowski ◽  
Emilie Bierque ◽  
Najwa Taib ◽  
...  

ABSTRACTThe Negativicutes are a clade of Firmicutes that have retained the ancestral diderm character and possess an outer membrane. One of the best studied Negativicute, Veillonella parvula, is an anaerobic commensal and opportunistic pathogen inhabiting complex human microbial communities, including the gut and the dental plaque microbiota. Whereas adhesion and biofilm capacity of V. parvula is expected to be crucial for its maintenance and development in these environments, studies of V. parvula adhesion have been hindered by the lack of efficient genetic tools to perform functional analyses in this bacterium. Here, we took advantage of a recently described naturally transformable V. parvula isolate, SKV38, and adapted tools developed for the closely related Clostridia spp. to perform random transposon and targeted mutagenesis to identify V. parvula genes involved in biofilm formation. We show that type V secreted autotransporters -typically found in diderm bacteria-are the main determinants of V. parvula auto-aggregation and biofilm formation, which compete with each other for binding either to cells or to surfaces, with strong consequences on V. parvula biofilm formation capacity. We also show that inactivation of the gene coding for a poorly characterized metal-dependent phosphohydrolase HD domain protein conserved in the Firmicutes and their closely related diderm phyla inhibits autotransporter-mediated biofilm formation. This study paves the way for further molecular characterization of V. parvula interactions with other bacteria and the host within complex microbiota environments.


2018 ◽  
Vol 201 (2) ◽  
Author(s):  
Carly Ching ◽  
Brendan Yang ◽  
Chineme Onwubueke ◽  
David Lazinski ◽  
Andrew Camilli ◽  
...  

ABSTRACTAcinetobacter baumanniiis a Gram-negative opportunistic pathogen that is known to survive harsh environmental conditions and is a leading cause of hospital-acquired infections. Specifically, multicellular communities (known as biofilms) ofA. baumanniican withstand desiccation and survive on hospital surfaces and equipment. Biofilms are bacteria embedded in a self-produced extracellular matrix composed of proteins, sugars, and/or DNA. Bacteria in a biofilm are protected from environmental stresses, including antibiotics, which provides the bacteria with selective advantage for survival. Although some gene products are known to play roles in this developmental process inA. baumannii, mechanisms and signaling remain mostly unknown. Here, we find that Lon protease inA. baumanniiaffects biofilm development and has other important physiological roles, including motility and the cell envelope. Lon proteases are found in all domains of life, participating in regulatory processes and maintaining cellular homeostasis. These data reveal the importance of Lon protease in influencing keyA. baumanniiprocesses to survive stress and to maintain viability.IMPORTANCEAcinetobacter baumanniiis an opportunistic pathogen and is a leading cause of hospital-acquired infections.A. baumanniiis difficult to eradicate and to manage, because this bacterium is known to robustly survive desiccation and to quickly gain antibiotic resistance. We sought to investigate biofilm formation inA. baumannii, since much remains unknown about biofilm formation in this bacterium. Biofilms, which are multicellular communities of bacteria, are surface attached and difficult to eliminate from hospital equipment and implanted devices. Our research identifies multifaceted physiological roles for the conserved bacterial protease Lon inA. baumannii. These roles include biofilm formation, motility, and viability. This work broadly affects and expands understanding of the biology ofA. baumannii, which will permit us to find effective ways to eliminate the bacterium.


2019 ◽  
Vol 201 (6) ◽  
Author(s):  
Wooi Keong Teh ◽  
Shaynoor Dramsi ◽  
Tim Tolker-Nielsen ◽  
Liang Yang ◽  
Michael Givskov

ABSTRACT Cyclic di-AMP is a recently identified second messenger exploited by a number of Gram-positive bacteria to regulate important biological processes. Here, we studied the phenotypic alterations induced by the increased intracellular c-di-AMP levels in Streptococcus gallolyticus, an opportunistic pathogen responsible for septicemia and endocarditis in the elderly. We report that an S. gallolyticus c-di-AMP phosphodiesterase gdpP knockout mutant, which displays a 1.5-fold higher intracellular c-di-AMP levels than the parental strain UCN34, is more sensitive to osmotic stress and is morphologically smaller than the parental strain. Unexpectedly, we found that a higher level of c-di-AMP reduced biofilm formation of S. gallolyticus on abiotic surfaces and reduced adherence and cell aggregation on human intestinal cells. A genome-wide transcriptomic analysis indicated that c-di-AMP regulates many biological processes in S. gallolyticus, including the expression of various ABC transporters and disease-associated genes encoding bacteriocin and Pil3 pilus. Complementation of the gdpP in-frame deletion mutant with a plasmid carrying gdpP in trans from its native promoter restored bacterial morphology, tolerance to osmotic stress, biofilm formation, adherence to intestinal cells, bacteriocin production, and Pil3 pilus expression. Our results indicate that c-di-AMP is a pleiotropic signaling molecule in S. gallolyticus that may be important for S. gallolyticus pathogenesis. IMPORTANCE Streptococcus gallolyticus is an opportunistic pathogen responsible for septicemia and endocarditis in the elderly and is also strongly associated with colorectal cancer. S. gallolyticus can form biofilms, express specific pili to colonize the host tissues, and produce a specific bacteriocin allowing killing of commensal bacteria in the murine colon. Nevertheless, how the expression of these colonization factors is regulated remains largely unknown. Here, we show that c-di-AMP plays pleiotropic roles in S. gallolyticus, controlling the tolerance to osmotic stress, cell size, biofilm formation on abiotic surfaces, adherence and cell aggregation on human intestinal cells, expression of Pil3 pilus, and production of bacteriocin. This study indicates that c-di-AMP may constitute a key regulatory molecule for S. gallolyticus host colonization and pathogenesis.


2012 ◽  
Vol 80 (5) ◽  
pp. 1681-1689 ◽  
Author(s):  
Ane Mohn Bjelland ◽  
Henning Sørum ◽  
Daget Ayana Tegegne ◽  
Hanne C. Winther-Larsen ◽  
Nils Peder Willassen ◽  
...  

ABSTRACTVibrio(Aliivibrio)salmonicidais the causal agent of cold-water vibriosis, a fatal bacterial septicemia primarily of farmed salmonid fish. The molecular mechanisms of invasion, colonization, and growth ofV. salmonicidain the host are still largely unknown, and few virulence factors have been identified. Quorum sensing (QS) is a cell-to-cell communication system known to regulate virulence and other activities in several bacterial species. The genome ofV. salmonicidaLFI1238 encodes products presumably involved in several QS systems. In this study, the gene encoding LitR, a homolog of the master regulator of QS inV. fischeri, was deleted. Compared to the parental strain, thelitRmutant showed increased motility, adhesion, cell-to-cell aggregation, and biofilm formation. Furthermore, thelitRmutant produced less cryptic bioluminescence, whereas production of acylhomoserine lactones was unaffected. Our results also indicate a salinity-sensitive regulation of LitR. Finally, reduced mortality was observed in Atlantic salmon infected with thelitRmutant, implying that the fish were more susceptible to infection with the wild type than with the mutant strain. We hypothesize that LitR inhibits biofilm formation and favors planktonic growth, with the latter being more adapted for pathogenesis in the fish host.


2016 ◽  
Vol 84 (8) ◽  
pp. 2209-2219 ◽  
Author(s):  
Luhua Zhang ◽  
Ying Li ◽  
Yiping Wen ◽  
Gee W. Lau ◽  
Xiaobo Huang ◽  
...  

Haemophilus parasuisis an opportunistic pathogen that causes Glässer's disease in swine, with polyserositis, meningitis, and arthritis. The high-temperature requirement A (HtrA)-like protease, which is involved in protein quality control, has been reported to be a virulence factor in many pathogens. In this study, we showed that HtrA ofH. parasuis(HpHtrA) exhibited both chaperone and protease activities. Finally, nickel import ATP-binding protein (NikE), periplasmic dipeptide transport protein (DppA), and outer membrane protein A (OmpA) were identified as proteolytic substrates for HpHtrA. The protease activity reached its maximum at 40°C in a time-dependent manner. Disruption of thehtrAgene from strain SC1401 affected tolerance to temperature stress and resistance to complement-mediated killing. Furthermore, increased autoagglutination and biofilm formation were detected in thehtrAmutant. In addition, thehtrAmutant was significantly attenuated in virulence in the murine model of infection. Together, these data demonstrate that HpHtrA plays an important role in the virulence ofH. parasuis.


2018 ◽  
Vol 84 (22) ◽  
Author(s):  
Carly R. Grant ◽  
Lilah Rahn-Lee ◽  
Kristen N. LeGault ◽  
Arash Komeili

ABSTRACTMagnetosomes are complex bacterial organelles that serve as model systems for studying bacterial cell biology, biomineralization, and global iron cycling. Magnetosome biogenesis is primarily studied in two closely relatedAlphaproteobacteriaof the genusMagnetospirillumthat form cubooctahedral-shaped magnetite crystals within a lipid membrane. However, chemically and structurally distinct magnetic particles have been found in physiologically and phylogenetically diverse bacteria. Due to a lack of molecular genetic tools, the mechanistic diversity of magnetosome formation remains poorly understood.Desulfovibrio magneticusRS-1 is an anaerobic sulfate-reducing deltaproteobacterium that forms bullet-shaped magnetite crystals. A recent forward genetic screen identified 10 genes in the conserved magnetosome gene island ofD. magneticusthat are essential for its magnetic phenotype. However, this screen likely missed mutants with defects in crystal size, shape, and arrangement. Reverse genetics to target the remaining putative magnetosome genes using standard genetic methods of suicide vector integration have not been feasible due to the low transconjugation efficiency. Here, we present a reverse genetic method for targeted mutagenesis inD. magneticususing a replicative plasmid. To test this method, we generated a mutant resistant to 5-fluorouracil by making a markerless deletion of theuppgene that encodes uracil phosphoribosyltransferase. We also used this method for targeted marker exchange mutagenesis by replacingkupM, a gene identified in our previous screen as a magnetosome formation factor, with a streptomycin resistance cassette. Overall, our results show that targeted mutagenesis using a replicative plasmid is effective inD. magneticusand may also be applied to other genetically recalcitrant bacteria.IMPORTANCEMagnetotactic bacteria (MTB) are a group of organisms that form intracellular nanometer-scale magnetic crystals though a complex process involving lipid and protein scaffolds. These magnetic crystals and their lipid membranes, termed magnetosomes, are model systems for studying bacterial cell biology and biomineralization and are potential platforms for biotechnological applications. Due to a lack of genetic tools and unculturable representatives, the mechanisms of magnetosome formation in phylogenetically deeply branching MTB remain unknown. These MTB contain elongated bullet-/tooth-shaped magnetite and greigite crystals that likely form in a manner distinct from that of the cubooctahedral-shaped magnetite crystals of the genetically tractable MTB within theAlphaproteobacteria. Here, we present a method for genome editing inDesulfovibrio magneticusRS-1, a cultured representative of the deeply branching MTB of the classDeltaproteobacteria. This marks a crucial step in developingD. magneticusas a model for studying diverse mechanisms of magnetic particle formation by MTB.


2020 ◽  
Vol 86 (21) ◽  
Author(s):  
Nataliya A. Teteneva ◽  
Sergey V. Mart’yanov ◽  
María Esteban-López ◽  
Jörg Kahnt ◽  
Timo Glatter ◽  
...  

ABSTRACT In most ecosystems, bacteria exist primarily as structured surface-associated biofilms that can be highly tolerant to antibiotics and thus represent an important health issue. Here, we explored drug repurposing as a strategy to identify new antibiofilm compounds, screening over 1,000 compounds from the Prestwick Chemical Library of approved drugs for specific activities that prevent biofilm formation by Escherichia coli. Most growth-inhibiting compounds, which include known antibacterial but also antiviral and other drugs, also reduced biofilm formation. However, we also identified several drugs that were biofilm inhibitory at doses where only a weak effect or no effect on planktonic growth could be observed. The activities of the most specific antibiofilm compounds were further characterized using gene expression analysis, proteomics, and microscopy. We observed that most of these drugs acted by repressing genes responsible for the production of curli, a major component of the E. coli biofilm matrix. This repression apparently occurred through the induction of several different stress responses, including DNA and cell wall damage, and homeostasis of divalent cations, demonstrating that biofilm formation can be inhibited through a variety of molecular mechanisms. One tested drug, tyloxapol, did not affect curli expression or cell growth but instead inhibited biofilm formation by suppressing bacterial attachment to the surface. IMPORTANCE The prevention of bacterial biofilm formation is one of the major current challenges in microbiology. Here, by systematically screening a large number of approved drugs for their ability to suppress biofilm formation by Escherichia coli, we identified a number of prospective antibiofilm compounds. We further demonstrated different mechanisms of action for individual compounds, from induction of replicative stress to disbalance of cation homeostasis to inhibition of bacterial attachment to the surface. Our work demonstrates the potential of drug repurposing for the prevention of bacterial biofilm formation and suggests that also for other bacteria, the activity spectrum of antibiofilm compounds is likely to be broad.


2019 ◽  
Vol 85 (21) ◽  
Author(s):  
K. Lee ◽  
A. R. Walker ◽  
B. Chakraborty ◽  
J. R. Kaspar ◽  
M. M. Nascimento ◽  
...  

ABSTRACT Health-associated biofilms in the oral cavity are composed of a diverse group of microbial species that can foster an environment that is less favorable for the outgrowth of dental caries pathogens, like Streptococcus mutans. A novel oral bacterium, designated Streptococcus A12, was previously isolated from supragingival dental plaque of a caries-free individual and was shown to interfere potently with the growth and virulence properties of S. mutans. In this study, we applied functional genomics to begin to identify molecular mechanisms used by A12 to antagonize, and to resist the antagonistic factors of, S. mutans. Using bioinformatics, genes that could encode factors that enhance the ability of A12 to compete with S. mutans were identified. Selected genes, designated potential competitive factors (pcf), were deleted. Certain mutant derivatives showed a reduced capacity to compete with S. mutans compared to that of the parental strain. The A12 pcfO mutant lost the ability to inhibit comX-inducing peptide (XIP) signaling by S. mutans, while mutants with changes in the pcfFEG locus were impaired in sensing of, and were more sensitive to, the lantibiotic nisin. Loss of PcfV, annotated as a colicin V biosynthetic protein, resulted in diminished antagonism of S. mutans. Collectively, the data provide new insights into the complexities and variety of factors that affect biofilm ecology and virulence. Continued exploration of the genomic and physiological factors that distinguish commensals from truly beneficial members of the oral microbiota will lead to a better understanding of the microbiome and new approaches to promote oral health. IMPORTANCE Advances in defining the composition of health-associated biofilms have highlighted the important role of beneficial species in maintaining health. Comparatively little, however, has been done to address the genomic and physiological bases underlying the probiotic mechanisms of beneficial commensals. In this study, we explored the ability of a novel oral bacterial isolate, Streptococcus A12, to compete with the dental pathogen Streptococcus mutans using various gene products with diverse functions. A12 displayed enhanced competitiveness by (i) disrupting intercellular communication pathways of S. mutans, (ii) sensing and resisting antimicrobial peptides, and (iii) producing factors involved in the production of a putative antimicrobial compound. Research on the probiotic mechanisms employed by Streptococcus A12 is providing essential insights into how beneficial bacteria may help maintain oral health, which will aid in the development of biomarkers and therapeutics that can improve the practice of clinical dentistry.


mBio ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. e02880-20
Author(s):  
E. Keats Shwab ◽  
Praveen R. Juvvadi ◽  
Greg Waitt ◽  
Shareef Shaheen ◽  
John Allen ◽  
...  

ABSTRACTProtein kinase A (PKA) signaling plays a critical role in the growth and development of all eukaryotic microbes. However, few direct targets have been characterized in any organism. The fungus Aspergillus fumigatus is a leading infectious cause of death in immunocompromised patients, but the specific molecular mechanisms responsible for its pathogenesis are poorly understood. We used this important pathogen as a platform for a comprehensive and multifaceted interrogation of both the PKA-dependent whole proteome and phosphoproteome in order to elucidate the mechanisms through which PKA signaling regulates invasive microbial disease. Employing advanced quantitative whole-proteomic and phosphoproteomic approaches with two complementary phosphopeptide enrichment strategies, coupled to an independent PKA interactome analysis, we defined distinct PKA-regulated pathways and identified novel direct PKA targets contributing to pathogenesis. We discovered three previously uncharacterized virulence-associated PKA effectors, including an autophagy-related protein, Atg24; a CCAAT-binding transcriptional regulator, HapB; and a CCR4-NOT complex-associated ubiquitin ligase, Not4. Targeted mutagenesis, combined with in vitro kinase assays, multiple murine infection models, structural modeling, and molecular dynamics simulations, was employed to characterize the roles of these new PKA targets in growth, environmental and antimicrobial stress responses, and pathogenesis in a mammalian system. We also elucidated the molecular mechanisms of PKA regulation for these effectors by defining the functionality of phosphorylation at specific PKA target sites. We have comprehensively characterized the PKA-dependent phosphoproteome and validated PKA targets as direct regulators of infectious disease for the first time in any pathogen, providing new insights into PKA signaling and control over microbial pathogenesis.IMPORTANCE PKA is essential for the virulence of eukaryotic human pathogens. Understanding PKA signaling mechanisms is therefore fundamental to deciphering pathogenesis and developing novel therapies. Despite its ubiquitous necessity, specific PKA effectors underlying microbial disease remain unknown. To address this fundamental knowledge gap, we examined the whole-proteomic and phosphoproteomic impacts of PKA on the deadly fungal pathogen Aspergillus fumigatus to uncover novel PKA targets controlling growth and virulence. We also defined the functional consequences of specific posttranslational modifications of these target proteins to characterize the molecular mechanisms of pathogenic effector regulation by PKA. This study constitutes the most comprehensive analysis of the PKA-dependent phosphoproteome of any human pathogen and proposes new and complex roles played by PKA signaling networks in governing infectious disease.


2018 ◽  
Vol 200 (7) ◽  
Author(s):  
Benjamin R. Pursley ◽  
Michael M. Maiden ◽  
Meng-Lun Hsieh ◽  
Nicolas L. Fernandez ◽  
Geoffrey B. Severin ◽  
...  

ABSTRACT3′,5′-Cyclic diguanylic acid (c-di-GMP) is a bacterial second messenger molecule that is a key global regulator inVibrio cholerae, but the molecular mechanisms by which this molecule regulates downstream phenotypes have not been fully characterized. One such regulatory factor that may respond to c-di-GMP is the Vc2 c-di-GMP-binding riboswitch that is hypothesized to control the expression of the downstream putative transcription factor TfoY. Although much is known about the physical and structural properties of the Vc2 riboswitch aptamer, the nature of its expression and function inV. choleraehas not been investigated. Here, we show that Vc2 functions as an off switch to inhibit TfoY production at intermediate and high concentrations of c-di-GMP. At low c-di-GMP concentrations, TfoY production is induced to stimulate dispersive motility. We also observed increased transcription oftfoYat high intracellular concentrations of c-di-GMP, but this induction is independent of the Vc2 riboswitch and occurs via transcriptional control of promoters upstream oftfoYby the previously identified c-di-GMP dependent transcription factor VpsR. Our results show that TfoY is induced by c-di-GMP at both low and high intracellular concentrations of c-di-GMP via posttranscriptional and transcriptional mechanisms, respectively. This regulation contributes to the formation of three distinct c-di-GMP signaling states inV. cholerae.IMPORTANCEThe bacterial pathogenVibrio choleraemust transition between life in aquatic environmental reservoirs and life in the gastrointestinal tract. Biofilm formation and bacterial motility, and their control by the second messenger molecule c-di-GMP, play integral roles in this adaptation. Here, we define the third major mechanism by which c-di-GMP controls bacterial motility. This pathway utilizes a noncoding RNA element known as a riboswitch that, when bound to c-di-GMP, inhibits the expression of the transcription factor TfoY. TfoY production switchesV. choleraemotility from a dense to a dispersive state. Our results suggest that the c-di-GMP signaling network ofV. choleraecan exist in at least three distinct states to regulate biofilm formation and motility.


Sign in / Sign up

Export Citation Format

Share Document