scholarly journals Diverse C-Terminal Sequences Involved in Flavobacterium johnsoniae Protein Secretion

2017 ◽  
Vol 199 (12) ◽  
Author(s):  
Surashree S. Kulkarni ◽  
Yongtao Zhu ◽  
Colton J. Brendel ◽  
Mark J. McBride

ABSTRACT Flavobacterium johnsoniae and many related bacteria secrete proteins across the outer membrane using the type IX secretion system (T9SS). Proteins secreted by T9SSs have amino-terminal signal peptides for export across the cytoplasmic membrane by the Sec system and carboxy-terminal domains (CTDs) targeting them for secretion across the outer membrane by the T9SS. Most but not all T9SS CTDs belong to the family TIGR04183 (type A CTDs). We functionally characterized diverse CTDs for secretion by the F. johnsoniae T9SS. Attachment of the CTDs from F. johnsoniae RemA, AmyB, and ChiA to the foreign superfolder green fluorescent protein (sfGFP) that had a signal peptide at the amino terminus resulted in secretion across the outer membrane. In each case, approximately 80 to 100 amino acids from the extreme carboxy termini were needed for efficient secretion. Several type A CTDs from distantly related members of the phylum Bacteroidetes functioned in F. johnsoniae, supporting the secretion of sfGFP by the F. johnsoniae T9SS. F. johnsoniae SprB requires the T9SS for secretion but lacks a type A CTD. It has a conserved C-terminal domain belonging to the family TIGR04131, which we refer to as a type B CTD. The CTD of SprB was required for its secretion, but attachment of C-terminal regions of SprB of up to 1,182 amino acids to sfGFP failed to result in secretion. Additional features outside the C-terminal region of SprB may be required for its secretion. IMPORTANCE Type IX protein secretion systems (T9SSs) are common in but limited to members of the phylum Bacteroidetes. Most proteins that are secreted by T9SSs have conserved carboxy-terminal domains that belong to the protein domain family TIGR04183 (type A CTDs) or TIGR04131 (type B CTDs). Here, we identify features of T9SS CTDs of F. johnsoniae that are required for protein secretion and demonstrate that type A CTDs from distantly related members of the phylum function with the F. johnsoniae T9SS to secrete the foreign protein sfGFP. In contrast, type B CTDs failed to target sfGFP for secretion, suggesting a more complex association with the T9SS.

2019 ◽  
Vol 201 (19) ◽  
Author(s):  
Surashree S. Kulkarni ◽  
Joseph J. Johnston ◽  
Yongtao Zhu ◽  
Zachary T. Hying ◽  
Mark J. McBride

ABSTRACTFlavobacterium johnsoniaeSprB moves rapidly along the cell surface, resulting in gliding motility. SprB secretion requires the type IX secretion system (T9SS). Proteins secreted by the T9SS typically have conserved C-terminal domains (CTDs) belonging to the type A CTD or type B CTD family. Attachment of 70- to 100-amino-acid type A CTDs to a foreign protein allows its secretion. Type B CTDs are common but have received little attention. Secretion of the foreign protein superfolder green fluorescent protein (sfGFP) fused to regions spanning the SprB type B CTD (sfGFP-CTDSprB) was analyzed. CTDs of 218 amino acids or longer resulted in secretion of sfGFP, whereas a 149-amino-acid region did not. Some sfGFP was secreted in soluble form, whereas the rest was attached on the cell surface. Surface-attached sfGFP was rapidly propelled along the cell, suggesting productive interaction with the motility machinery. This did not result in rapid cell movement, which apparently requires additional regions of SprB. Secretion of sfGFP-CTDSprBrequired coexpression withsprF, which lies downstream ofsprB. SprF is similar in sequence toPorphyromonas gingivalisPorP. MostF. johnsoniaegenes encoding proteins with type B CTDs lie immediately upstream ofporP/sprF-like genes. sfGFP was fused to the type B CTD from one such protein (Fjoh_3952). This resulted in secretion of sfGFP only when it was coexpressed with its cognate PorP/SprF-like protein. These results highlight the need for extended regions of type B CTDs and for coexpression with the appropriate PorP/SprF-like protein for efficient secretion and cell surface localization of cargo proteins.IMPORTANCETheF. johnsoniaegliding motility adhesin SprB is delivered to the cell surface by the type IX secretion system (T9SS) and is rapidly propelled along the cell by the motility machinery. How this 6,497-amino-acid protein interacts with the secretion and motility machines is not known. Fusion of the C-terminal 218 amino acids of SprB to a foreign cargo protein resulted in its secretion, attachment to the cell surface, and rapid movement by the motility machinery. Efficient secretion of SprB required coexpression with the outer membrane protein SprF. Secreted proteins that have sequence similarity to SprB in their C-terminal regions are common in the phylumBacteroidetesand may have roles in adhesion, motility, and virulence.


2017 ◽  
Vol 61 (3) ◽  
Author(s):  
Jorgelina Morán-Barrio ◽  
María M. Cameranesi ◽  
Verónica Relling ◽  
Adriana S. Limansky ◽  
Luciano Brambilla ◽  
...  

ABSTRACT The number and type of outer membrane (OM) channels responsible for carbapenem uptake in Acinetobacter are still not well defined. Here, we addressed these questions by using Acinetobacter baylyi as a model species and a combination of methodologies aimed to characterize OM channels in their original membrane environment. Kinetic and competition analyses of imipenem (IPM) uptake by A. baylyi whole cells allowed us to identify different carbapenem-specific OM uptake sites. Comparative analyses of IPM uptake by A. baylyi wild-type (WT) cells and ΔcarO mutants lacking CarO indicated that this OM protein provided a carbapenem uptake site displaying saturable kinetics and common binding sites for basic amino acids compatible with a specific channel. The kinetic analysis uncovered another carbapenem-specific channel displaying a somewhat lower affinity for IPM than that of CarO and, in addition, common binding sites for basic amino acids as determined by competition studies. The use of A. baylyi gene deletion mutants lacking OM proteins proposed to function in carbapenem uptake in Acinetobacter baumannii indicated that CarO and OprD/OccAB1 mutants displayed low but consistent reductions in susceptibility to different carbapenems, including IPM, meropenem, and ertapenem. These two mutants also showed impaired growth on l-Arg but not on other carbon sources, further supporting a role of CarO and OprD/OccAB1 in basic amino acid and carbapenem uptake. A multiple-carbapenem-channel scenario may provide clues to our understanding of the contribution of OM channel loss or mutation to the carbapenem-resistant phenotype evolved by pathogenic members of the Acinetobacter genus.


1998 ◽  
Vol 18 (5) ◽  
pp. 2748-2757 ◽  
Author(s):  
Jacqueline M. Sterner ◽  
Susan Dew-Knight ◽  
Christine Musahl ◽  
Sally Kornbluth ◽  
Jonathan M. Horowitz

ABSTRACT A yeast two-hybrid screen was employed to identify human proteins that specifically bind the amino-terminal 400 amino acids of the retinoblastoma (Rb) protein. Two independent cDNAs resulting from this screen were found to encode the carboxy-terminal 137 amino acids of MCM7, a member of a family of proteins that comprise replication licensing factor. Full-length Rb and MCM7 form protein complexes in vitro, and the amino termini of two Rb-related proteins, p107 and p130, also bind MCM7. Protein complexes between Rb and MCM7 were also detected in anti-Rb immunoprecipitates prepared from human cells. The amino-termini of Rb and p130 strongly inhibited DNA replication in an MCM7-dependent fashion in a Xenopus in vitro DNA replication assay system. These data provide the first evidence that Rb and Rb-related proteins can directly regulate DNA replication and that components of licensing factor are targets of the products of tumor suppressor genes.


1993 ◽  
Vol 178 (6) ◽  
pp. 2237-2242 ◽  
Author(s):  
R E Nickowitz ◽  
H J Worman

Patients with primary biliary cirrhosis (PBC) frequently have autoantibodies against a 210-kD integral glycoprotein of the nuclear envelope pore membrane. This protein, termed gp210, has a 1,783-amino acid amino-terminal domain located in the perinuclear space, a 20-amino acid transmembrane segment, and a 58-amino acid cytoplasmic carboxy-terminal tail. We now demonstrate that autoantibodies from 25 patients with PBC that recognize gp210 react with the cytoplasmic carboxy-terminal tail while none react with unmodified linear epitopes in the amino-terminal domain. The epitope(s) recognized by autoantibodies from all 25 patients is contained within a stretch of 15 amino acids. The recognized amino acid sequence is homologous to the protein products of the Escherichia coli mutY gene and Salmonella typhimurium mutB gene with an exact identity of six consecutive amino acids, suggesting that anti-gp210 antibodies may arise by molecular mimicry of bacterial antigenic determinants.


2020 ◽  
Vol 202 (16) ◽  
Author(s):  
Sammi Chung ◽  
Andrew J. Darwin

ABSTRACT Bacterial carboxyl-terminal processing proteases (CTPs) are widely conserved and have been linked to important processes, including signal transduction, cell wall metabolism, and virulence. However, the features that target proteins for CTP-dependent cleavage are unclear. Studies of the Escherichia coli CTP Prc suggested that it cleaves proteins with nonpolar and/or structurally unconstrained C termini, but it is not clear if this applies broadly. Pseudomonas aeruginosa has a divergent CTP, CtpA, which is required for virulence. CtpA works in complex with the outer membrane lipoprotein LbcA to degrade cell wall hydrolases. In this study, we investigated if the C termini of two nonhomologous CtpA substrates are important for their degradation. We determined that these substrates have extended C termini compared to those of their closest E. coli homologs. Removing 7 amino acids from these extensions was sufficient to reduce their degradation by CtpA both in vivo and in vitro. Degradation of one truncated substrate was restored by adding the C terminus from the other but not by adding an unrelated sequence. However, modification of the C termini of nonsubstrates, by adding the C-terminal amino acids from a substrate, did not cause their degradation by CtpA. Therefore, the C termini of CtpA substrates are required but not sufficient for their efficient degradation. Although C-terminal truncated substrates were protected from degradation, they still associated with the LbcA-CtpA complex in vivo. Therefore, degradation of a protein by CtpA requires a C terminus-independent interaction with the LbcA-CtpA complex, followed by C terminus-dependent degradation, perhaps because CtpA normally initiates cleavage at a C-terminal site. IMPORTANCE Carboxyl-terminal processing proteases (CTPs) are found in all three domains of life, but exactly how they work is poorly understood, including how they recognize substrates. Bacterial CTPs have been associated with virulence, including CtpA of Pseudomonas aeruginosa, which works in complex with the outer membrane lipoprotein LbcA to degrade potentially dangerous peptidoglycan hydrolases. We report an important advance by revealing that efficient degradation by CtpA requires at least two separable phenomena and that one of them depends on information encoded in the substrate C terminus. A C terminus-independent association with the LbcA-CtpA complex is followed by C terminus-dependent cleavage by CtpA. Increased understanding of how CTPs target proteins is significant, due to their links to virulence, peptidoglycan remodeling, and other important processes.


1997 ◽  
Vol 110 (9) ◽  
pp. 1051-1062 ◽  
Author(s):  
A. Kohler ◽  
M.S. Schmidt-Zachmann ◽  
W.W. Franke

Using a specific monoclonal antibody (mAb AND-1/23-5-14) we have identified, cDNA-cloned and characterized a novel DNA-binding protein of the clawed toad, Xenopus laevis, that is accumulated in the nucleoplasm of oocytes and various other cells. This protein comprises 1,127 amino acids, with a total molecular mass of 125 kDa and a pI of 5.27. It is encoded by a mRNA of approximately 4 kb and contains, in addition to clusters of acidic amino acids, two hallmark motifs: the amino-terminal part harbours seven consecutive ‘WD-repeats’, which are sequence motifs of about 40 amino acids that are characteristic of a large group of regulatory proteins involved in diverse cellular functions, while the carboxy terminal portion possesses a 63-amino-acid-long ‘HMG-box’, which is typical of a family of DNA-binding proteins involved in regulation of chromatin assembly, transcription and replication. The DNA-binding capability of the protein was demonstrated by DNA affinity chromatography and electrophoretic mobility shift assays using four-way junction DNA. Protein AND-1 (acidic nucleoplasmic DNA-binding protein) appears as an oligomer, probably a homodimer, and has been localized throughout the entire interchromatinic space of the interphase nucleoplasm, whereas during mitosis it is transiently dispersed over the cytoplasm. We also identified a closely related, perhaps orthologous protein in mammals. The unique features of protein AND-1, which is a ‘natural chimera’ combining properties of the WD-repeat and the HMG-box families of proteins, are discussed in relation to its possible nuclear functions.


2017 ◽  
Vol 62 (3) ◽  
Author(s):  
Rudolf Kukla ◽  
Katerina Chudejova ◽  
Costas C. Papagiannitsis ◽  
Matej Medvecky ◽  
Katerina Habalova ◽  
...  

ABSTRACT Ten Enterobacteriaceae isolates collected in a Czech hospital carried bla KPC -positive plasmids of different sizes (∼30, ∼45, and ∼80 kb). Sequencing revealed three types of plasmids (A to C) with the Tn 4401a transposon. Type A plasmids comprised an IncR backbone and a KPC-2-encoding multidrug resistance (MDR) region. Type B plasmids were derivatives of type A plasmids carrying an IncN3-like segment, while type C plasmids were IncP6 plasmids sharing the same KPC-2-encoding MDR region with type A and B plasmids.


1998 ◽  
Vol 9 (10) ◽  
pp. 2715-2727 ◽  
Author(s):  
Nadine C. Romzek ◽  
Estelle S. Harris ◽  
Cheryl L. Dell ◽  
Jeffrey Skronek ◽  
Elizabeth Hasse ◽  
...  

T cell activation rapidly and transiently regulates the functional activity of integrin receptors. Stimulation of CD3/T cell receptor, CD2 or CD28, as well as activation with phorbol esters, can induce within minutes an increase in β1 integrin-mediated adhesion of T cells to fibronectin. In this study, we have produced and utilized a mutant of the Jurkat T cell line, designated A1, that lacks protein and mRNA expression of the β1 integrin subunit but retains normal levels of CD2, CD3, and CD28 on the cell surface. Activation-dependent adhesion of A1 cells to fibronectin could be restored upon transfection of a wild-type human β1 integrin cDNA. Adhesion induced by phorbol 12-myristate 13-acetate-, CD3-, CD2-, and CD28 stimulation did not occur if the carboxy-terminal five amino acids of the β1 tail were truncated or if either of two well-conserved NPXY motifs were deleted. Scanning alanine substitutions of the carboxy-terminal five amino acids demonstrated a critical role for the tyrosine residue at position 795. The carboxy-terminal truncation and the NPXY deletions also reduced adhesion induced by direct stimulation of the β1 integrin with the activating β1 integrin-specific mAb TS2/16, although the effects were not as dramatic as observed with the other integrin-activating signals. These results demonstrate a vital role for the amino-terminal NPXY motif and the carboxy-terminal end of the β1 integrin cytoplasmic domain in activation-dependent regulation of integrin-mediated adhesion in T cells. Furthermore, the A1 cell line represents a valuable new cellular reagent for the analysis of β1 integrin structure and function in human T cells.


1995 ◽  
Vol 129 (4) ◽  
pp. 1007-1022 ◽  
Author(s):  
M D Henry ◽  
C Gonzalez Agosti ◽  
F Solomon

The ERM proteins--ezrin, radixin, and moesin--occur in particular cortical cytoskeletal structures. Several lines of evidence suggest that they interact with both cytoskeletal elements and plasma membrane components. Here we described the properties of full-length and truncated radixin polypeptides expressed in transfected cells. In stable transfectants, exogenous full-length radixin behaves much like endogenous ERM proteins, localizing to the same cortical structures. However, the presence of full-length radixin or its carboxy-terminal domain in cortical structures correlates with greatly diminished staining of endogenous moesin in those structures, suggesting that radixin and moesin compete for a limiting factor required for normal associations in the cell. The results also reveal distinct roles for the amino- and carboxy-terminal domains. At low levels relative to endogenous radixin, the carboxy-terminal polypeptide is associated with most of the correct cortical targets except cleavage furrows. In contrast, the amino-terminal polypeptide is diffusely localized throughout the cell. Low level expression of full-length radixin or either of the truncated polypeptides has no detectable effect on cell physiology. However, high level expression of the carboxy-terminal domain dramatically disrupts normal cytoskeletal structures and functions. At these high levels, the amino-terminal polypeptide does localize to cortical structures, but does not affect the cells. We conclude that the behavior of radixin in cells depends upon activities contributed by separate domains of the protein, but also requires modulating interactions between those domains.


1992 ◽  
Vol 12 (2) ◽  
pp. 685-695 ◽  
Author(s):  
V Bours ◽  
P R Burd ◽  
K Brown ◽  
J Villalobos ◽  
S Park ◽  
...  

A Rel-related, mitogen-inducible, kappa B-binding protein has been cloned as an immediate-early activation gene of human peripheral blood T cells. The cDNA has an open reading frame of 900 amino acids capable of encoding a 97-kDa protein. This protein is most similar to the 105-kDa precursor polypeptide of p50-NF-kappa B. Like the 105-kDa precursor, it contains an amino-terminal Rel-related domain of about 300 amino acids and a carboxy-terminal domain containing six full cell cycle or ankyrin repeats. In vitro-translated proteins, truncated downstream of the Rel domain and excluding the repeats, bind kappa B sites. We refer to the kappa B-binding, truncated protein as p50B by analogy with p50-NF-kappa B and to the full-length protein as p97. p50B is able to form heteromeric kappa B-binding complexes with RelB, as well as with p65 and p50, the two subunits of NF-kappa B. Transient-transfection experiments in embryonal carcinoma cells demonstrate a functional cooperation between p50B and RelB or p65 in transactivation of a reporter plasmid dependent on a kappa B site. The data imply the existence of a complex family of NF-kappa B-like transcription factors.


Sign in / Sign up

Export Citation Format

Share Document