scholarly journals Three-Dimensional Macromolecular Organization of Cryofixed Myxococcus xanthus Biofilms as Revealed by Electron Microscopic Tomography

2009 ◽  
Vol 191 (7) ◽  
pp. 2077-2082 ◽  
Author(s):  
Hildur Palsdottir ◽  
Jonathan P. Remis ◽  
Christoph Schaudinn ◽  
Eileen O'Toole ◽  
Renate Lux ◽  
...  

ABSTRACT Despite the fact that most bacteria grow in biofilms in natural and pathogenic ecosystems, very little is known about the ultrastructure of their component cells or about the details of their community architecture. We used high-pressure freezing and freeze-substitution to minimize the artifacts of chemical fixation, sample aggregation, and sample extraction. As a further innovation we have, for the first time in biofilm research, used electron tomography and three-dimensional (3D) visualization to better resolve the macromolecular 3D ultrastructure of a biofilm. This combination of superb specimen preparation and greatly improved resolution in the z axis has opened a window in studies of Myxococcus xanthus cell ultrastructure and biofilm community architecture. New structural information on the chromatin body, cytoplasmic organization, membrane apposition between adjacent cells, and structure and distribution of pili and vesicles in the biofilm matrix is presented.

1997 ◽  
Vol 3 (S2) ◽  
pp. 1111-1112
Author(s):  
D.A. Agard ◽  
M.B. Braunfeld ◽  
Hans Chen ◽  
Rebecca McQuitty ◽  
John Sedat

Electron tomography is a powerful tool for elucidating the three-dimensional architecture of large biological complexes and subcellular organelles. Use of intermediate voltage electron microscopes extended the technique by providing the means to examine very large and non-symmetrical subcellular organelles, at resolutions beyond what would be possible using light microscopy. Recent studies using electron tomography on a variety cellular organelles and assemblies such as centrosomes (Moritz et al.,1995a,b), kinetochores (McEwen, 1993) and chromatin (Woodcock, 1994), have clearly demonstrated the power of this method for obtaining 3D structural information on non-symmetric cell components. When combined with biochemical and molecular observations, these 3D reconstructions have provided significant new insights into biological function.Although the information that tomography provides is unique, its use as a general tool in the biological community has been limited due to the complexities involved in data collection and processing.We are simultaneously trying to make this approach accessible through automation as well as trying to extend the resolution and accuracy of the reconstructions. Significant, has been the use of low-dose cryo-electron microscopic automated data collection methods.


Author(s):  
Weiping Liu ◽  
John W. Sedat ◽  
David A. Agard

Any real world object is three-dimensional. The principle of tomography, which reconstructs the 3-D structure of an object from its 2-D projections of different view angles has found application in many disciplines. Electron Microscopic (EM) tomography on non-ordered structures (e.g., subcellular structures in biology and non-crystalline structures in material science) has been exercised sporadically in the last twenty years or so. As vital as is the 3-D structural information and with no existing alternative 3-D imaging technique to compete in its high resolution range, the technique to date remains the kingdom of a brave few. Its tedious tasks have been preventing it from being a routine tool. One keyword in promoting its popularity is automation: The data collection has been automated in our lab, which can routinely yield a data set of over 100 projections in the matter of a few hours. Now the image processing part is also automated. Such automations finish the job easier, faster and better.


1998 ◽  
Vol 4 (S2) ◽  
pp. 440-441
Author(s):  
Maryann E. Martone ◽  
Andrea Thor ◽  
Stephen J. Young ◽  
Mark H. Ellisman.

Light microscopic imaging has experienced a renaissance in the past decade or so, as new techniques for high resolution 3D light microscopy have become readily available. Light microscopic (LM) analysis of cellular details is desirable in many cases because of the flexibility of staining protocols, the ease of specimen preparation and the relatively large sample size that can be obtained compared to electron microscopic (EM) analysis. Despite these advantages, many light microscopic investigations require additional analysis at the electron microscopic level to resolve fine structural features.High voltage electron microscopy allows the use of relatively thick sections compared to conventional EM and provides the basis for excellent new methods to bridge the gap between microanatomical details revealed by LM and EM methods. When combined with electron tomography, investigators can derive accurate 3D data from these thicker specimens. Through the use of correlated light and electron microscopy, 3D reconstructions of large cellular or subcellular structures can be obtained with the confocal microscope,


1999 ◽  
Vol 5 (S2) ◽  
pp. 430-431
Author(s):  
H. Hohenberg

Cells are information driven systems. Cellular information is stored in certain molecules, at certain places, in a certain concentration, at a particular time and under given physiological conditions. The goal of biological electron microscopy is to provide this information network, to correlate the cellular ultrastructure and its function. In this sense, it is essential to combine the high resolution of our electron optical instruments with a high information density of the biological system. Most of the structural information is lost in the course of the different preparation steps prior to electron microscopy. For this reason it is necessary that all preparation steps such as: 1. sampling: e.g. excision of tissues, 2. cryoimmobilisation, 3. follow-up procedures: e.g. freeze-fracturing, freeze-substitution and embedding, should have identical high quality levels preventing or minimizing the loss of structural information. To this aim our methodological activities focus on the development of special micro-techniques for the sampling of: a) native tissues, with an automatic fine-needle biopsy technique (1), of b) suspensions, with a special cellulose capillary technique (2), of c) cell monolayer, with a thin film cultivation technique (3) and the application/perfection of cryotechniques (high-pressure freezing (HPF) and freeze-substitution). In particular, the high-pressure freezer (HPM 010, Bal-Tec) has proven to be a highly useful tool for successful cryoimmobilization of almost any kinds of cells and tissues, bulk specimens (< 200 μm in thickness) being included. This freezing technique does not require any cryoprotection, and if combined with our micro-techniques the risk of inducing artefacts as a result of specimen preparation prior to freezing is minimized.


2002 ◽  
Vol 10 (2) ◽  
pp. 3-5
Author(s):  
Stephen W. Carmichael

The transmission electron microscope (TEM) was invented in the 1930's, and developments in specimen preparation in the 1950's led to its widespread use as a tool to study structure in biologic systems. Similar in principle to the light microscope, but utilizing a much shorter wavelength for better resolution, the TEM has the image-forming beam pass through the specimen. This results in a two-dimensional image which can be difficult to interpret because features from different depths of the three dimensional specimen are superimposed. Traditionally this was dealt with by cutting sections of plastic-embedded specimens so thin (in the 40 to SO nanometer range) that they effectively had only two dimensions. To allow biologists to examine structures in three dimensions, serial sections are stacked and structures reconstructed. Even though computers have made reconstruction easier, the reality is that resolution in the depth dimension is limited by the section thickness. The technique of electron tomography is emerging as a way to overcome this limitation.


2020 ◽  
Author(s):  
Gong-Her Wu ◽  
Patrick G. Mitchell ◽  
Jesus G. Galaz-Montoya ◽  
Corey W. Hecksel ◽  
Emily M. Sontag ◽  
...  

SUMMARYThree-dimensional (3D) visualization of vitrified cells can uncover structures of subcellular complexes without chemical fixation or staining. Here, we present a pipeline integrating three imaging modalities to visualize the same specimen at cryogenic temperature at different scales: cryo-fluorescence confocal microscopy, volume cryo-focused ion beam scanning electron microscopy, and transmission cryo-electron tomography. Our proof-of-concept benchmark revealed the 3D distribution of organelles and subcellular structures in whole heat-shocked yeast cells, including the ultrastructure of protein inclusions that recruit fluorescently-labelled chaperone Hsp104. Since our workflow efficiently integrates imaging at three different scales and can be applied to other types of cells, it could be used for large-scale phenotypic studies of frozen-hydrated specimens in a variety of healthy and diseased conditions with and without treatments.


2018 ◽  
Vol 15 (2) ◽  
Author(s):  
Niklas Biere ◽  
Mehmood Ghaffar ◽  
Anja Doebbe ◽  
Daniel Jäger ◽  
Nils Rothe ◽  
...  

AbstractThe structural modeling and representation of cells is a complex task as different microscopic, spectroscopic and other information resources have to be combined to achieve a three-dimensional representation with high accuracy. Moreover, to provide an appropriate spatial representation of the cell, a stereoscopic 3D (S3D) visualization is favorable. In this work, a structural cell model is created by combining information from various light microscopic and electron microscopic images as well as from publication-related data. At the mesoscopic level each cell component is presented with special structural and visual properties; at the molecular level a cell membrane composition and the underlying modeling method are discussed; and structural information is correlated with those at the functional level (represented by simplified energy-producing metabolic pathways).The organism used as an example is the unicellular Chlamydomonas reinhardtii, which might be important in future alternative energy production processes. Based on the 3D model, an educative S3D animation was created which was shown at conferences. The complete workflow was accomplished by using the open source 3D modeling software Blender.The discussed project including the animation is available from: http://Cm5.CELLmicrocosmos.org


2003 ◽  
Vol 14 (7) ◽  
pp. 2999-3012 ◽  
Author(s):  
Eileen T. O'Toole ◽  
Thomas H. Giddings ◽  
J. Richard McIntosh ◽  
Susan K. Dutcher

Improved methods of specimen preparation and dual-axis electron tomography have been used to study the structure and organization of basal bodies in the unicellular alga Chlamydomonas reinhardtii. Novel structures have been found in both wild type and strains with mutations that affect specific tubulin isoforms. Previous studies have shown that strains lacking δ-tubulin fail to assemble the C-tubule of the basal body. Tomographic reconstructions of basal bodies from the δ-tubulin deletion mutant uni3-1 have confirmed that basal bodies contain mostly doublet microtubules. Our methods now show that the stellate fibers, which are present only in the transition zone of wild-type cells, repeat within the core of uni3-1 basal bodies. The distal striated fiber is incomplete in this mutant, rootlet microtubules can be misplaced, and multiflagellate cells have been observed. A suppressor of uni3-1, designated tua2-6, contains a mutation in α-tubulin. tua2-6; uni3-1 cells build both flagella, yet they retain defects in basal body structure and in rootlet microtubule positioning. These data suggest that the presence of specific tubulin isoforms in Chlamydomonas directly affects the assembly and function of both basal bodies and basal body-associated structures.


2017 ◽  
Vol 23 (6) ◽  
pp. 1121-1129 ◽  
Author(s):  
Toby Sanders ◽  
Ilke Arslan

AbstractElectron tomography has become an essential tool for three-dimensional (3D) characterization of nanomaterials. In recent years, advances have been made in specimen preparation and mounting, acquisition geometries, and reconstruction algorithms. All of these components work together to optimize the resolution and clarity of an electron tomogram. However, one important component of the data-processing has received less attention: the 2D tilt series alignment. This is challenging for a number of reasons, namely because the nature of the data sets and the need to be coherently aligned over the full range of angles. An inaccurate alignment may be difficult to identify, yet can significantly limit the final 3D resolution. In this work, we present an improved center-of-mass alignment model that allows us to overcome discrepancies from unwanted objects that enter the imaging area throughout the tilt series. In particular, we develop an approach to overcome changes in the total mass upon rotation of the imaging area. We apply our approach to accurately recover small Pt nanoparticles embedded in a zeolite that may otherwise go undetected both in the 2D microscopy images and the 3D reconstruction. In addition to this, we highlight the particular effectiveness of the compressed sensing methods with this data set.


Sign in / Sign up

Export Citation Format

Share Document