scholarly journals The GntR-Like Regulator TauR Activates Expression of Taurine Utilization Genes in Rhodobacter capsulatus

2007 ◽  
Vol 190 (2) ◽  
pp. 487-493 ◽  
Author(s):  
Jessica Wiethaus ◽  
Britta Schubert ◽  
Yvonne Pfänder ◽  
Franz Narberhaus ◽  
Bernd Masepohl

ABSTRACT Rhodobacter capsulatus can efficiently grow with taurine as the sole sulfur source. The products of the tpa-tauR-xsc gene region are essential for this activity. TauR, a MocR-like member of the GntR superfamily of transcriptional regulators, activates tpa transcription, as shown by analysis of wild-type and tauR mutant strains carrying a tpa-lacZ reporter fusion. Activation of the tpa promoter requires taurine but is not inhibited by sulfate, which is the preferred sulfur source. TauR directly binds to the tpa promoter, as demonstrated by DNA mobility shift assays. As expected for a transcriptional activator, the TauR binding site is located upstream of the transcription start site, which has been determined by primer extension. Site-directed promoter mutations reveal that TauR binds to direct repeats, an unusual property that has to date been shown for only one other member of the MocR subfamily, namely, GabR from Bacillus subtilis. In contrast, all other members of the GntR family analyzed so far bind to inverted repeats.

2003 ◽  
Vol 185 (15) ◽  
pp. 4450-4460 ◽  
Author(s):  
Ashok K. Dubey ◽  
Carol S. Baker ◽  
Kazushi Suzuki ◽  
A. Daniel Jones ◽  
Pallavi Pandit ◽  
...  

ABSTRACT CsrA is a global regulator that binds to two sites in the glgCAP leader transcript, thereby blocking ribosome access to the glgC Shine-Dalgarno sequence. The upstream CsrA binding site (GCACACGGAU) was used to search the Escherichia coli genomic sequence for other genes that might be regulated by CsrA. cstA contained an exact match that overlapped its Shine-Dalgarno sequence. cstA was previously shown to be induced by carbon starvation and to encode a peptide transporter. Expression of a cstA′-′lacZ translational fusion in wild-type and csrA mutant strains was examined. Expression levels in the csrA mutant were approximately twofold higher when cells were grown in Luria broth (LB) and 5- to 10-fold higher when LB was supplemented with glucose. It was previously shown that cstA is regulated by the cyclic AMP (cAMP)-cAMP receptor protein complex and transcribed by Εσ70. We investigated the influence of σS on cstA expression and found that a σS deficiency resulted in a threefold increase in cstA expression in wild-type and csrA mutant strains; however, CsrA-dependent regulation was retained. The mechanism of CsrA-mediated cstA regulation was also examined in vitro. Cross-linking studies demonstrated that CsrA is a homodimer. Gel mobility shift results showed that CsrA binds specifically to cstA RNA, while coupled-transcription-translation and toeprint studies demonstrated that CsrA regulates CstA synthesis by inhibiting ribosome binding to cstA transcripts. RNA footprint and boundary analyses revealed three or four CsrA binding sites, one of which overlaps the cstA Shine-Dalgarno sequence, as predicted. These results establish that CsrA regulates translation of cstA by sterically interfering with ribosome binding.


2005 ◽  
Vol 73 (3) ◽  
pp. 1684-1694 ◽  
Author(s):  
Maria-José Ferrándiz ◽  
Keith Bishop ◽  
Paul Williams ◽  
Helen Withers

ABSTRACT In enteropathogenic and enterohemorraghic Escherichia coli (EPEC and EHEC), two members of the SlyA family of transcriptional regulators have been identified as SlyA. Western blot analysis of the wild type and the corresponding hosA and slyA deletion mutants indicated that SlyA and HosA are distinct proteins whose expression is not interdependent. Of 27 different E. coli strains (EPEC, EHEC, enteroinvasive, enteroaggregative, uropathogenic, and commensal) examined, 14 were positive for both genes and proteins. To investigate hosA expression, a hosA::luxCDABE reporter gene fusion was constructed. hosA expression was significantly reduced in the hosA but not the slyA mutant and was influenced by temperature, salt, and pH. In contrast to SlyA, HosA did not activate the cryptic E. coli K-12 hemolysin ClyA. Mutation of hosA did not influence type III secretion, the regulation of the LEE1 and LEE4 operons, or the ability of E2348/69 to form attaching-and-effacing lesions on intestinal epithelial cells. HosA is, however, involved in the temperature-dependent positive control of motility on swim plates and regulates fliC expression and FliC protein levels. In electrophoretic mobility shift assays, purified HosA protein bound specifically to the fliC promoter, indicating that HosA directly modulates flagellin expression. While direct examination of flagellar structure and the motile behavior of individual hosA cells grown in broth culture at 30°C did not reveal any obvious differences, hosA mutants, unlike the wild type, clumped together, forming nonmotile aggregates which could account for the markedly reduced motility of the hosA mutant on swim plates at 30°C. We conclude that SlyA and HosA are independent transcriptional regulators that respond to different physicochemical cues to facilitate the environmental adaptation of E. coli.


1991 ◽  
Vol 155 (3) ◽  
pp. 205-209 ◽  
Author(s):  
Augusto F. Garcia ◽  
Werner M�ntele ◽  
Nasser Gad'on ◽  
Monier H. Tadros ◽  
Gerhart Drews

Genetics ◽  
1996 ◽  
Vol 143 (3) ◽  
pp. 1339-1347
Author(s):  
Alfred M Handler ◽  
Sheilachu P Gomez

Abstract Function of the Drosophila melanogaster hobo transposon in tephritid species was tested in transient embryonic excision assays. Wild-type and mutant strains of Anastrepha suspensa, Bactrocera dorsalis, B. cucurbitae, Ceratitis capitata, and Toxotrypana curvicauda all supported hobo excision or deletion both in the presence and absence of co-injected hobo transposase, indicating a permissive state for hobo mobility and the existence of endogenous systems capable of mobilizing hobo. In several strains hobo helper reduced excision. Excision depended on hobo sequences in the indicator plasmid, though almost all excisions were imprecise and the mobilizing systems appear mechanistically different from hobo. hobe-related sequences were identified in all species except T. curvicauda. Parsimony analysis yielded a subgroup including the B. cucurbitae and C. capitata sequences along with hobo and Hermes, and a separate, more divergent subgroup including the A. suspensa and B. dorsalis sequences. All of the sequences exist as multiple genomic elements, and a deleted form of the B. cucurbitae element exists in B. dorsalis. The hobo-related sequences are probably members of the hAT transposon family with some evolving from distant ancestor elements, while others may have originated from more recent horizontal transfers.


2020 ◽  
Author(s):  
Maik Hintze ◽  
Sebastian Griesing ◽  
Marion Michels ◽  
Birgit Blanck ◽  
Lena Wischhof ◽  
...  

AbstractWe investigated the contribution of apoptosis-inducing factor (AIF), a key regulator of mitochondrial biogenesis, in supporting hair growth. We report that pelage abnormalities developed during hair follicle (HF) morphogenesis in Harlequin (Hq) mutant mice. Fragility of the hair cortex was associated with decreased expression of genes encoding structural hair proteins, though key transcriptional regulators of HF development were expressed at normal levels. Notably, Aifm1 (R200 del) knockin males and Aifm1(R200 del)/Hq females showed minor hair defects, despite substantially reduced AIF levels. Furthermore, we cloned the integrated ecotropic provirus of the Aifm1Hq allele. We found that its overexpression in wild-type keratinocyte cell lines led to down-regulation of HF-specific Krt84 and Krtap3-3 genes without altering Aifm1 or epidermal Krt5 expression. Together, our findings imply that pelage paucity in Hq mutant mice is mechanistically linked to severe AIF deficiency and is associated with the expression of retroviral elements that might potentially influence the transcriptional regulation of structural hair proteins.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marianna Iorio ◽  
Sahar Davatgarbenam ◽  
Stefania Serina ◽  
Paolo Criscenzo ◽  
Mitja M. Zdouc ◽  
...  

AbstractWe report a metabolomic analysis of Streptomyces sp. ID38640, a soil isolate that produces the bacterial RNA polymerase inhibitor pseudouridimycin. The analysis was performed on the wild type, on three newly constructed and seven previously reported mutant strains disabled in different genes required for pseudouridimycin biosynthesis. The results indicate that Streptomyces sp. ID38640 is able to produce, in addition to lydicamycins and deferroxiamines, as previously reported, also the lassopeptide ulleungdin, the non-ribosomal peptide antipain and the osmoprotectant ectoine. The corresponding biosynthetic gene clusters were readily identified in the strain genome. We also detected the known compound pyridindolol, for which we propose a previously unreported biosynthetic gene cluster, as well as three families of unknown metabolites. Remarkably, the levels of most metabolites varied strongly in the different mutant strains, an observation that enabled detection of metabolites unnoticed in the wild type. Systematic investigation of the accumulated metabolites in the ten different pum mutants identified shed further light on pseudouridimycin biosynthesis. We also show that several Streptomyces strains, able to produce pseudouridimycin, have distinct genetic relationship and metabolic profile with ID38640.


2021 ◽  
Vol 22 (14) ◽  
pp. 7565
Author(s):  
Kyungho Woo ◽  
Dong Ho Kim ◽  
Man Hwan Oh ◽  
Ho Sung Park ◽  
Chul Hee Choi

Quorum sensing of Acinetobacter nosocomialis for cell-to-cell communication produces N-3-hydroxy dodecanoyl-DL-homoserine lactone (OH-dDHL) by an AnoR/I two-component system. However, OH-dDHL-driven apoptotic mechanisms in hosts have not been clearly defined. Here, we investigated the induction of apoptosis signaling pathways in bone marrow-derived macrophages treated with synthetic OH-dDHL. Moreover, the quorum-sensing system for virulence regulation was evaluated in vivo using wild-type and anoI-deletion mutant strains. OH-dDHL decreased the viability of macrophage and epithelial cells in dose- and time-dependent manners. OH-dDHL induced Ca2+ efflux and caspase-12 activation by ER stress transmembrane protein (IRE1 and ATF6a p50) aggregation and induced mitochondrial dysfunction through reactive oxygen species (ROS) production, which caused cytochrome c to leak. Pretreatment with a pan-caspase inhibitor reduced caspase-3, -8, and -9, which were activated by OH-dDHL. Pro-inflammatory cytokine and paraoxonase-2 (PON2) gene expression were increased by OH-dDHL. We showed that the anoI-deletion mutant strains have less intracellular invasion compared to the wild-type strain, and their virulence, such as colonization and dissemination, was decreased in vivo. Consequently, these findings revealed that OH-dDHL, as a virulence factor, contributes to bacterial infection and survival as well as the modification of host responses in the early stages of infection.


2002 ◽  
Vol 184 (4) ◽  
pp. 1172-1179 ◽  
Author(s):  
Thomas M. A. Gronewold ◽  
Dale Kaiser

ABSTRACT Cell-bound C-signal guides the building of a fruiting body and triggers the differentiation of myxospores. Earlier work has shown that transcription of the csgA gene, which encodes the C-signal, is directed by four genes of the act operon. To see how expression of the genes encoding components of the aggregation and sporulation processes depends on C-signaling, mutants with loss-of-function mutations in each of the act genes were investigated. These mutations were found to have no effect on genes that are normally expressed up to 3 h into development and are C-signal independent. Neither the time of first expression nor the rate of expression increase was changed in actA, actB, actC, or actD mutant strains. Also, there was no effect on A-signal production, which normally starts before 3 h. By contrast, the null act mutants have striking defects in C-signal production. These mutations changed the expression of four gene reporters that are related to aggregation and sporulation and are expressed at 6 h or later in development. The actA and actB null mutations substantially decreased the expression of all these reporters. The other act null mutations caused either premature expression to wild-type levels (actC) or delayed expression (actD), which ultimately rose to wild-type levels. The pattern of effects on these reporters shows how the C-signal differentially regulates the steps that together build a fruiting body and differentiate spores within it.


Plant Disease ◽  
1998 ◽  
Vol 82 (4) ◽  
pp. 374-379 ◽  
Author(s):  
Y. Luo ◽  
D. O. TeBeest

The fungus Colletotrichum gloeosporioides f. sp. aeschynomene causes an anthracnose on Aeschynomene virginica and has been used as a biological control agent to control this weed in the United States. The population dynamics of a wild-type strain (3-1-3) and two mutant strains of 3-1-3 of C. gloeosporioides f. sp. aeschynomene, a benomyl-resistant strain (B21) and nitrate-nonutilizing strain (Nit A), were studied in field tests on northern jointvetch in 1994 and 1995 to determine how the strains interacted on infected plants under field conditions. Plants were co-inoculated with strains 3-1-3 and B21, strains 3-1-3 and Nit A, and strains 3-1-3, B21, and Nit A at equal and unequal initial proportions. Plants were grown and maintained under flooded conditions in small wading pools. In co-inoculation of plants with 3-1-3 and B21 from equal initial proportions, the population of 3-1-3 increased slightly until it reached a proportion of 60 to 70%, whereas the population density of B21 reached 30 to 40% at the end of growing season. From unequal initial proportions, the population density of B21 decreased from 90 to about 50%, whereas the 3-1-3 increased from 10 to 50%. The population density of 3-1-3 increased from an equal initial proportion and was significantly greater than that of Nit A on every sampling time. From unequal initial proportions, the population density of 3-1-3 increased from 10 to 90%, whereas that of Nit A declined. In co-inoculation of plants with the three strains, the population density of 3-1-3 was significantly greater than those of the mutant strains at every sampling time. The proportions of mutant strains within the total population of C. gloeosporioides f. sp. aeschynomene on plants varied according to the test conditions and the number and types of strains co-inoculated.


Sign in / Sign up

Export Citation Format

Share Document