scholarly journals Does the Importance of the C-Terminal Residues in the Maturation of RgpB from Porphyromonas gingivalis Reveal a Novel Mechanism for Protein Export in a Subgroup of Gram-Negative Bacteria?

2006 ◽  
Vol 189 (3) ◽  
pp. 833-843 ◽  
Author(s):  
Ky-Anh Nguyen ◽  
James Travis ◽  
Jan Potempa

ABSTRACT The mature 507-residue RgpB protein belongs to an important class of extracellular outer membrane-associated proteases, the gingipains, from the oral pathogen Porphyromonas gingivalis that has been shown to play a central role in the virulence of the organism. The C termini of these gingipains along with other outer membrane proteins from the organism share homologous sequences and have been suggested to function in attachment of these proteins to the outer membrane. In this report, we have created a series of truncated and site-directed mutants of the C terminus from a representative member of this class, the RgpB protease, to investigate its role in the maturation of these proteins. Truncation of the last two residues (valyl-lysine) from the C terminus is sufficient to create an inactive version of the protein that lacks the posttranslational glycosylation seen in the wild type, and the protein remains trapped behind the outer membrane. Alanine scanning of the last five residues revealed the importance of the C-terminal motif in mediating correct posttranslational modification of the protein. This result may have a wider implication in a novel secretory pathway in distinct members of the Cytophaga-Flavobacterium-Bacteroidetes phylum.

2020 ◽  
Vol 202 (21) ◽  
Author(s):  
Elizabeth M. Hart ◽  
Thomas J. Silhavy

ABSTRACT The heteropentomeric β-barrel assembly machine (BAM complex) is responsible for folding and inserting a diverse array of β-barrel outer membrane proteins (OMPs) into the outer membrane (OM) of Gram-negative bacteria. The BAM complex contains two essential proteins, the β-barrel OMP BamA and a lipoprotein BamD, whereas the auxiliary lipoproteins BamBCE are individually nonessential. Here, we identify and characterize three bamA mutations, the E-to-K change at position 470 (bamAE470K), the A-to-P change at position 496 (bamAA496P), and the A-to-S change at position 499 (bamAA499S), that suppress the otherwise lethal ΔbamD, ΔbamB ΔbamC ΔbamE, and ΔbamC ΔbamD ΔbamE mutations. The viability of cells lacking different combinations of BAM complex lipoproteins provides the opportunity to examine the role of the individual proteins in OMP assembly. Results show that, in wild-type cells, BamBCE share a redundant function; at least one of these lipoproteins must be present to allow BamD to coordinate productively with BamA. Besides BamA regulation, BamD shares an additional essential function that is redundant with a second function of BamB. Remarkably, bamAE470K suppresses both, allowing the construction of a BAM complex composed solely of BamAE470K that is able to assemble OMPs in the absence of BamBCDE. This work demonstrates that the BAM complex lipoproteins do not participate in the catalytic folding of OMP substrates but rather function to increase the efficiency of the assembly process by coordinating and regulating the assembly of diverse OMP substrates. IMPORTANCE The folding and insertion of β-barrel outer membrane proteins (OMPs) are conserved processes in mitochondria, chloroplasts, and Gram-negative bacteria. In Gram-negative bacteria, OMPs are assembled into the outer membrane (OM) by the heteropentomeric β-barrel assembly machine (BAM complex). In this study, we probe the function of the individual BAM proteins and how they coordinate assembly of a diverse family of OMPs. Furthermore, we identify a gain-of-function bamA mutant capable of assembling OMPs independently of all four other BAM proteins. This work advances our understanding of OMP assembly and sheds light on how this process is distinct in Gram-negative bacteria.


1995 ◽  
Vol 41 (6) ◽  
pp. 525-532 ◽  
Author(s):  
S Peter Howard ◽  
Heather G. Meiklejhon

Mutations in the exeC-N operon of Aeromonas hydrophila, which block extracellular protein secretion, also result in large decreases in the level of the major outer membrane porin, protein II. Immunoblot analysis demonstrated that the porin missing from the outer membrane of the mutant was not accumulating elsewhere in the cell. Pulse-chase and immunoprecipitation analyses showed that the porin was as stable in the mutant as in the wild type, but that far less porin was synthesized in the exe mutants. The relationship between extracellular secretion involving the exe genes and the assembly of other outer membrane and surface proteins was also examined. Both the wild type and exeE mutants of A. hydrophila were capable of assembling the protein I and protein III porins under inducing conditions. Aeromonas sohria As9071, which contains a surface array protein, could secrete A. hydrophila aerolysin and required homologues of the A. hydrophila exe genes to do so; however, an exe− derivative of this bacteria was unaffected in its ability to assemble its surface array. These results demonstrate that the exe genes are not required for general outer membrane protein assembly in these bacteria, but that the synthesis of protein II is specifically downregulated in the exe mutants.Key words: extracellular secretion, outer membrane assembly, surface layer, Aeromonas.


Microbiology ◽  
2010 ◽  
Vol 156 (7) ◽  
pp. 2180-2193 ◽  
Author(s):  
Devon O. Osbourne ◽  
Wilson Aruni ◽  
Francis Roy ◽  
Christopher Perry ◽  
Lawrence Sandberg ◽  
...  

The Porphyromonas gingivalis vimA gene has been previously shown to play a significant role in the biogenesis of gingipains. Further, in P. gingivalis FLL92, a vimA-defective mutant, there was increased auto-aggregation, suggesting alteration in membrane surface proteins. In order to determine the role of the VimA protein in cell surface biogenesis, the surface morphology of P. gingivalis FLL92 was further characterized. Transmission electron microscopy demonstrated abundant fimbrial appendages and a less well defined and irregular capsule in FLL92 compared with the wild-type. In addition, atomic force microscopy showed that the wild-type had a smoother surface compared with FLL92. Western blot analysis using anti-FimA antibodies showed a 41 kDa immunoreactive protein band in P. gingivalis FLL92 which was missing in the wild-type P. gingivalis W83 strain. There was increased sensitivity to globomycin and vancomycin in FLL92 compared with the wild-type. Outer membrane fractions from FLL92 had a modified lectin-binding profile. Furthermore, in contrast with the wild-type strain, nine proteins were missing from the outer membrane fraction of FLL92, while 20 proteins present in that fraction from FLL92 were missing in the wild-type strain. Taken together, these results suggest that the VimA protein affects capsular synthesis and fimbrial phenotypic expression, and plays a role in the glycosylation and anchorage of several surface proteins.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1734 ◽  
Author(s):  
Rafael M. Ferreira ◽  
Leandro M. Moreira ◽  
Jesus A. Ferro ◽  
Marcia R.R. Soares ◽  
Marcelo L. Laia ◽  
...  

Citrus canker is a major disease affecting citrus production in Brazil. It’s mainly caused byXanthomonas citrisubsp.citristrain 306 pathotype A (Xac). We analysed the differential expression of proteins secreted by wild typeXacand an asymptomatic mutant forhrpB4(ΔhrpB4) grown in Nutrient Broth (NB) and a medium mimicking growth conditions in the plant (XAM1). This allowed the identification of 55 secreted proteins, of which 37 were secreted by both strains when cultured in XAM1. In this secreted protein repertoire, the following stand out: Virk, Polyphosphate-selective porin, Cellulase, Endoglucanase, Histone-like protein, Ribosomal proteins, five hypothetical proteins expressed only in the wild type strain, Lytic murein transglycosylase, Lipoprotein, Leucyl-tRNA synthetase, Co-chaperonin, Toluene tolerance, C-type cytochrome biogenesis membrane protein, Aminopeptidase and two hypothetical proteins expressed only in the ΔhrpB4mutant. Furthermore, Peptidoglycan-associated outer membrane protein, Regulator of pathogenicity factor, Outer membrane proteins, Endopolygalacturonase, Chorismate mutase, Peptidyl-prolyl cis-trans isomerase and seven hypothetical proteins were detected in both strains, suggesting that there was no relationship with the secretion mediated by the type III secretory system, which is not functional in the mutant strain. Also worth mentioning is the Elongation factor Tu (EF-Tu), expressed only the wild type strain, and Type IV pilus assembly protein, Flagellin (FliC) and Flagellar hook-associated protein, identified in the wild-type strain secretome when grown only in NB. Noteworthy, that FliC, EF-Tu are classically characterized as PAMPs (Pathogen-associated molecular patterns), responsible for a PAMP-triggered immunity response. Therefore, our results highlight proteins potentially involved with the virulence. Overall, we conclude that the use of secretome data is a valuable approach that may bring more knowledge of the biology of this important plant pathogen, which ultimately can lead to the establishment of new strategies to combat citrus canker.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Paul White ◽  
Samuel F. Haysom ◽  
Matthew G. Iadanza ◽  
Anna J. Higgins ◽  
Jonathan M. Machin ◽  
...  

AbstractThe folding of β-barrel outer membrane proteins (OMPs) in Gram-negative bacteria is catalysed by the β-barrel assembly machinery (BAM). How lateral opening in the β-barrel of the major subunit BamA assists in OMP folding, and the contribution of membrane disruption to BAM catalysis remain unresolved. Here, we use an anti-BamA monoclonal antibody fragment (Fab1) and two disulphide-crosslinked BAM variants (lid-locked (LL), and POTRA-5-locked (P5L)) to dissect these roles. Despite being lethal in vivo, we show that all complexes catalyse folding in vitro, albeit less efficiently than wild-type BAM. CryoEM reveals that while Fab1 and BAM-P5L trap an open-barrel state, BAM-LL contains a mixture of closed and contorted, partially-open structures. Finally, all three complexes globally destabilise the lipid bilayer, while BamA does not, revealing that the BAM lipoproteins are required for this function. Together the results provide insights into the role of BAM structure and lipid dynamics in OMP folding.


Microbiology ◽  
2006 ◽  
Vol 152 (6) ◽  
pp. 1621-1637 ◽  
Author(s):  
Malgorzata Adamczyk ◽  
Patrycja Dolowy ◽  
Michal Jonczyk ◽  
Christopher M. Thomas ◽  
Grazyna Jagura-Burdzy

The kfrA gene of the IncP-1 broad-host-range plasmids is the best-studied member of a growing gene family that shows strong linkage to the minimal replicon of many low-copy-number plasmids. KfrA is a DNA binding protein with a long, alpha-helical, coiled-coil tail. Studying IncP-1β plasmid R751, evidence is presented that kfrA and its downstream genes upf54.8 and upf54.4 were organized in a tricistronic operon (renamed here kfrA kfrB kfrC), expressed from autoregulated kfrAp, that was also repressed by KorA and KorB. KfrA, KfrB and KfrC interacted and may have formed a multi-protein complex. Inactivation of either kfrA or kfrB in R751 resulted in long-term accumulation of plasmid-negative bacteria, whereas wild-type R751 itself persisted without selection. Immunofluorescence studies showed that KfrAR751 formed plasmid-associated foci, and deletion of the C terminus of KfrA caused plasmid R751ΔC 2 kfrA foci to disperse and mislocalize. Thus, the KfrABC complex may be an important component in the organization and control of the plasmid clusters that seem to form the segregating unit in bacterial cells. The studied operon is therefore part of the set of functions needed for R751 to function as an efficient vehicle for maintenance and spread of genes in Gram-negative bacteria.


2020 ◽  
Vol 117 (31) ◽  
pp. 18737-18743 ◽  
Author(s):  
Elizabeth M. Hart ◽  
Meera Gupta ◽  
Martin Wühr ◽  
Thomas J. Silhavy

The outer membrane (OM) of gram-negative bacteria confers innate resistance to toxins and antibiotics. Integral β-barrel outer membrane proteins (OMPs) function to establish and maintain the selective permeability of the OM. OMPs are assembled into the OM by the β-barrel assembly machine (BAM), which is composed of one OMP—BamA—and four lipoproteins—BamB, C, D, and E. BamB, C, and E can be removed individually with only minor effects on barrier function; however, depletion of either BamA or BamD causes a global defect in OMP assembly and results in cell death. We have identified a gain-of-function mutation,bamAE470K, that bypasses the requirement for BamD. AlthoughbamD::kanbamAE470Kcells exhibit growth and OM barrier defects, they assemble OMPs with surprising robustness. Our results demonstrate that BamD does not play a catalytic role in OMP assembly, but rather functions to regulate the activity of BamA.


2001 ◽  
Vol 47 (8) ◽  
pp. 727-734 ◽  
Author(s):  
Sukumaran Sunil Kumar ◽  
Vasantha Malladi ◽  
Krishnan Sankaran ◽  
Richard Haigh ◽  
Peter Williams ◽  
...  

Enteropathogenic Escherichia coli (EPEC) causes persistent infantile diarrhoea. This nontoxigenic E. coli exhibits a complicated pathogenic mechanism in which its outer membrane proteins and type III secretory proteins damage intestinal epithelium and cause diarrhoea. In accordance with this, our previous study using HEp-2 cells demonstrated cytopathic effects caused by cell-free outer membrane preparations of EPEC. In this study, we report the extrusion of actin-positive strands from HEp-2 and Int 407 cells when treated with outer membrane preparations. An interesting observation of this work, perhaps relevant to the characteristic localized three-dimensional colony formation of EPEC, is the attachment of a wild type EPEC strain to these actin-positive strands.Key words: enteropathogenic Escherichia coli, actin, outer membrane proteins, cytoskeletal elements.


2008 ◽  
Vol 190 (11) ◽  
pp. 4001-4016 ◽  
Author(s):  
Wallace A. Kaserer ◽  
Xiaoxu Jiang ◽  
Qiaobin Xiao ◽  
Daniel C. Scott ◽  
Matthew Bauler ◽  
...  

ABSTRACT We created hybrid proteins to study the functions of TonB. We first fused the portion of Escherichia coli tonB that encodes the C-terminal 69 amino acids (amino acids 170 to 239) of TonB downstream from E. coli malE (MalE-TonB69C). Production of MalE-TonB69C in tonB + bacteria inhibited siderophore transport. After overexpression and purification of the fusion protein on an amylose column, we proteolytically released the TonB C terminus and characterized it. Fluorescence spectra positioned its sole tryptophan (W213) in a weakly polar site in the protein interior, shielded from quenchers. Affinity chromatography showed the binding of the TonB C-domain to other proteins: immobilized TonB-dependent (FepA and colicin B) and TonB-independent (FepAΔ3-17, OmpA, and lysozyme) proteins adsorbed MalE-TonB69C, revealing a general affinity of the C terminus for other proteins. Additional constructions fused full-length TonB upstream or downstream of green fluorescent protein (GFP). TonB-GFP constructs had partial functionality but no fluorescence; GFP-TonB fusion proteins were functional and fluorescent. The activity of the latter constructs, which localized GFP in the cytoplasm and TonB in the cell envelope, indicate that the TonB N terminus remains in the inner membrane during its biological function. Finally, sequence analyses revealed homology in the TonB C terminus to E. coli YcfS, a proline-rich protein that contains the lysin (LysM) peptidoglycan-binding motif. LysM structural mimicry occurs in two positions of the dimeric TonB C-domain, and experiments confirmed that it physically binds to the murein sacculus. Together, these findings infer that the TonB N terminus remains associated with the inner membrane, while the downstream region bridges the cell envelope from the affinity of the C terminus for peptidoglycan. This architecture suggests a membrane surveillance model of action, in which TonB finds occupied receptor proteins by surveying the underside of peptidoglycan-associated outer membrane proteins.


2004 ◽  
Vol 186 (23) ◽  
pp. 8000-8009 ◽  
Author(s):  
Michael C. Toporowski ◽  
John F. Nomellini ◽  
Peter Awram ◽  
John Smit

ABSTRACT Transport of RsaA, the crystalline S-layer subunit protein of Caulobacter crescentus, is mediated by a type I secretion mechanism. Two proteins have been identified that play the role of the outer membrane protein (OMP) component in the RsaA secretion machinery. The genes rsaF a and rsaF b were identified by similarity to the Escherichia coli hemolysin secretion OMP TolC by using the C. crescentus genome sequence. The rsaF a gene is located several kilobases downstream of the other transporter genes, while rsaF b is completely unlinked. An rsaF a knockout had ∼56% secretion compared to wild-type levels, while the rsaF b knockout reduced secretion levels to ∼79%. When expression of both proteins was eliminated, there was no RsaA secretion, but a residual level of ∼9% remained inside the cell, suggesting posttranslational autoregulation. Complementation with either of the individual rsaF genes by use of a multicopy vector, which resulted in 8- to 10-fold overexpression of the proteins, did not restore RsaA secretion to wild-type levels, indicating that both rsaF genes were required for full-level secretion. However, overexpression of rsaFa (with normal rsaF b levels) in concert with overexpression of rsaA resulted in a 28% increase in RsaA secretion, indicating a potential for significantly increasing expression levels of an already highly expressing type I secretion system. This is the only known example of type I secretion requiring two OMPs to assemble a fully functional system.


Sign in / Sign up

Export Citation Format

Share Document