Bioengineering of emulsifier structure: emulsan analogs

1997 ◽  
Vol 43 (4) ◽  
pp. 384-390 ◽  
Author(s):  
Alexander Gorkovenko ◽  
Jinwen Zhang ◽  
Richard A. Gross ◽  
Alfred L. Allen ◽  
David L. Kaplan

Strategies were investigated to modulate the side chain structure of emulsans formed by Acinetobacter calcoaceticus RAG-1. Analysis of emulsan fatty acid side chain groups by gas chromatography – mass spectrometry (GC–MS) revealed that by providing the exogenous n-alkanoic fatty acids 15:0, 16:0, and 17:0, emulsan analogs were formed with 53, 46, and 44 mol%, respectively, of fatty acid substituents with chain lengths equal to that of the carbon source. In contrast, the increase in emulsan fatty acids of chain lengths less than 15 or greater than 17 by providing corresponding shorter and longer chain length fatty acids as carbon sources was not substantial. When [1-13C]-labeled (99% enriched) palmitic acid was used as a carbon source along with acetate, analysis of m/z 75/14 and 87/88 isotopomer ratios by GC-MS indicated that 84 and 86% of the 16:0 and 16:1 (9-cis) side groups, respectively, were incorporated intact from the 16:0 carbon source. The percentage of 14-, 15-, 16-, 17-, and 18-carbon chain length fatty acid esters that were monounsaturated were 11, 26, 50, 70, and 85%, respectively. Based on the observed percentage of unsaturated chain length dependence and almost identical enrichment at C-1 of 16:0 and 16:1 (9-cis) side groups from [1-13C]-labeled experiments, it was concluded that desaturation of preformed n-alkanoic acids was the predominant mechanism of their formation. Further work established correlations between side chain structure and product emulsification specificity/activity, so that bioengineered emulsans with improved selectivity can now be formed.Key words: emulsan, Acinetobacter calcoaceticus RAG-1, fatty acids, direct incorporation, emulsification activity.

2016 ◽  
Vol 78 (5-6) ◽  
Author(s):  
Mohd Basyaruddin Abdul Rahman ◽  
Siti Salhah Othman ◽  
Noor Mona Md Yunus

The enzymatic selectivity of Lipase from Candida rugosa immobilized onto a calcined layered double hydroxide (CLDHs-CRL) towards the chain-length of fatty acids and alcohols in the synthesis of fatty acid esters was investigated.  The results showed that CMAN-CRL catalyzed the esterification process with fatty acids of medium chain lengths (C10-C14) effectively while, CNAN-CRL and CZAN-CRL exhibited high percentage conversion in fatty acids with carbon chain lengths of C8-C12 and C10-C18, respectively. In the alcohol selectivity study, CMAN-CRL showed high selectivity toward alcohols with carbon chain lengths of C4, C6 and C10.  On the other hand, both CNAN-CRL and CZAN-CRL exhibited rather low selectivity towards longer carbon chain length of alcohols. 


RSC Advances ◽  
2015 ◽  
Vol 5 (98) ◽  
pp. 80702-80708 ◽  
Author(s):  
Tuomas Kulomaa ◽  
Jorma Matikainen ◽  
Pirkko Karhunen ◽  
Mikko Heikkilä ◽  
Juha Fiskari ◽  
...  

Bio-based films were prepared by acylation of cellulose with saturated, unsaturated and branched fatty acids. The products showed increased thermal stability, low water vapour transmission rates and enhanced tensile and elastic properties.


Cosmetics ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 45 ◽  
Author(s):  
Dorota Dobler ◽  
Thomas Schmidts ◽  
Sören Wildenhain ◽  
Ilona Seewald ◽  
Michael Merzhäuser ◽  
...  

Human skin is a complex ecosystem and is host to a large number of microorganisms. When the bacterial ecosystem is balanced and differentiated, skin remains healthy. However, the use of cosmetics can change this balance and promote the appearance of skin diseases. The skin’s microorganisms can utilize some cosmetic components, which either promote their growth, or produce metabolites that influence the skin environment. In this study, we tested the ability of the Malassezia species and some bacterial strains to assimilate substances frequently used in dermal formulations. The growth capability of microorganisms was determined and their lipase activity was analyzed. The growth of all Malassezia spp. in the presence of free acids, free acid esters, and fatty alcohols with a fatty chain length above 12 carbon atoms was observed. No growth was observed in the presence of fatty alcohol ethers, secondary fatty alcohols, paraffin- and silicon-based substances, polymers, polyethylene glycols, quaternary ammonium salts, hydroxy fatty acid esters, or fatty acids and fatty acid esters with a fatty chain length shorter than 12 carbon atoms. The hydrolysis of esters by Malassezia lipases was detected using High Performance Thin Layer Chromatography (HPTLC). The production of free fatty acids as well as fatty alcohols was observed. The growth promotion or inhibition of bacterial strains was only found in the presence of a few ingredients. Based on these results, formulations containing microbiome inert ingredients were developed.


Cellulose ◽  
2016 ◽  
Vol 24 (2) ◽  
pp. 505-517 ◽  
Author(s):  
Pia Willberg-Keyriläinen ◽  
Jari Vartiainen ◽  
Ali Harlin ◽  
Jarmo Ropponen

LWT ◽  
2021 ◽  
pp. 110867
Author(s):  
Min Hyeock Lee ◽  
Ha Ram Kim ◽  
Woo Su Lim ◽  
Min-Cheol Kang ◽  
Hee-Don Choi ◽  
...  

1988 ◽  
Vol 250 (3) ◽  
pp. 819-825 ◽  
Author(s):  
E P Brass ◽  
R A Beyerinck

Accumulation of propionate, or its metabolic product propionyl-CoA, can disrupt normal cellular metabolism. The present study examined the effects of propionate, or propionyl-CoA generated during the oxidation of odd-chain-length fatty acids, on hepatic oxidation of short- and medium-chain-length fatty acids. In isolated hepatocytes, ketone-body formation from odd-chain-length fatty acids was slow as compared with even-chain-length fatty acid substrates, and increased as the carbon chain length was increased from five to seven to nine. In contrast, rates of ketogenesis from butyrate, hexonoate and octanoate were all approximately equal. Propionate (10 mM) inhibited ketogenesis from butyrate, hexanoate and octanoate by 81%, 53% and 18% respectively. Addition of carnitine had no effect on ketogenesis from the even-chain-length fatty acids, but increased the rate of ketone-body formation from pentanoate (by 53%), heptanoate (by 28%) and from butyrate or hexanoate in the presence of propionate. The inhibitory effect of propionate could not be explained by shunting acetyl-CoA into the tricarboxylic acid cycle, as CO2 formation from butyrate was also decreased by propionate. Examination of the hepatocyte CoA pool during oxidation of butyrate demonstrated that addition of propionate decreased acetyl-CoA and CoA as propionyl-CoA accumulated. Addition of carnitine decreased propionyl-CoA by 50% (associated with production of propionylcarnitine) and increased acetyl-CoA and CoA. Similar changes in the CoA pool were seen during the oxidation of pentanoate. These results demonstrate that accumulation of propionyl-CoA results in inhibition of short-chain fatty acid oxidation. Carnitine can partially reverse this inhibition. Changes in the hepatocyte CoA pool are consistent with carnitine acting by generating propionylcarnitine, thereby decreasing propionyl-CoA and increasing availability of free CoA. The data provide further evidence of the potential cellular toxicity from organic acid accretion, and supports the concept that carnitine's interaction with the cellular CoA pool can have a beneficial effect on cellular metabolism and function under conditions of unusual organic acid accumulation.


2003 ◽  
Vol 81 (12) ◽  
pp. 1285-1292 ◽  
Author(s):  
Takefumi Hattori ◽  
Akira Ohta ◽  
Masayuki Itaya ◽  
Mikio Shimada

We have investigated growth of ectomycorrhizal (ECM) fungi (i.e., 55 strains of 32 species in 15 genera) on saturated (palmitate), monounsaturated (oleate), diunsaturated (linoleate), triunsaturated (linolenate) fatty acids, and the triacylglyceride of oleate (triolein) lipid to elucidate an ability to utilize the fatty acids and lipid as a carbon source for growth. Relative utilization ratios (URs, %) based on mycelial growth on glucose suggest that ECM fungi belonging to the family Thelephoraceae have an ability to utilize palmitate. On the other hand, ECM fungi in the genus Laccaria can utilize at least either palmitate or oleate. Furthermore, Hygropharus russula grows on palmitate, oleate, and slightly on triolein. Lactarius chrysorrheus grows only on palmitate. These fatty-acid- and lipid-utilizing fungi may be promising as model fungi for further elucidation of the metabolic ability to utilize the fatty acids and lipid as a carbon source. On the contrary, the fungi in the genus Suillus were shown to scarcely utilize the fatty acids and lipid. Furthermore, most ECM fungi did not grow on either linoleate or linolenate.Key words: carbon source, ectomycorrhizal fungi, fatty acid, lipid, mycelial growth.


2021 ◽  
Vol 8 ◽  
Author(s):  
Teresa Kellerer ◽  
Karin Kleigrewe ◽  
Beate Brandl ◽  
Thomas Hofmann ◽  
Hans Hauner ◽  
...  

Background: Fatty acid esters of hydroxy fatty acids (FAHFAs) are a group of fatty acids with potential anti-inflammatory and anti-diabetic effects. The blood levels of FAHFAs and their regulation in humans have hardly been studied.Objective: We aimed to investigate serum FAHFA levels in well-characterized human cohorts, to evaluate associations with age, sex, BMI, weight loss, diabetic status, and diet.Methods: We analyzed levels of stearic-acid-9-hydroxy-stearic-acid (9-SAHSA), oleic-acid-9-hydroxy-stearic-acid (9-OAHSA) and palmitic-acid-9-hydroxy-palmitic-acid (9-PAHPA) as well as different palmitic acid-hydroxy-stearic-acids (PAHSAs) by HPLC-MS/MS with the use of an internal standard in various cohorts: A cohort of different age groups (18–25y; 40–65y; 75–85y; Σn = 60); severely obese patients undergoing bariatric surgery and non-obese controls (Σn = 36); obese patients with and without diabetes (Σn = 20); vegetarians/vegans (n = 10) and omnivores (n = 9); and young men before and after acute overfeeding with saturated fatty acids (SFA) (n = 15).Results: Omnivores had substantially higher FAHFA levels than vegetarians/vegans [median (25th percentile; 75th percentile) tFAHFAs = 12.82 (7.57; 14.86) vs. 5.86 (5.10; 6.71) nmol/L; P < 0.05]. Dietary overfeeding by supplementation of SFAs caused a significant increase within 1 week [median tFAHFAs = 4.31 (3.31; 5.27) vs. 6.96 (6.50; 7.76) nmol/L; P < 0.001]. Moreover, obese patients had lower FAHFA levels than non-obese controls [median tFAHFAs = 3.24 (2.80; 4.30) vs. 5.22 (4.18; 7.46) nmol/L; P < 0.01] and surgery-induced weight loss increased 9-OAHSA level while other FAHFAs were not affected. Furthermore, significant differences in some FAHFA levels were found between adolescents and adults or elderly, while no differences between sexes and between diabetic and non-diabetic individuals were detected.Conclusions: FAHFA serum levels are strongly affected by high SFA intake and reduced in severe obesity. Age also may influence FAHFA levels, whereas there was no detectable relation with sex and diabetic status. The physiological role of FAHFAs in humans remains to be better elucidated.Trial Registration: All studies referring to these analyses were registered in the German Clinical Trial Register (https://www.drks.de/drks_web/) with the numbers DRKS00009008, DRKS00010133, DRKS00006211, and DRKS00009797.


Sign in / Sign up

Export Citation Format

Share Document