scholarly journals The Complex Flagellar Torque Generator of Pseudomonas aeruginosa

2004 ◽  
Vol 186 (19) ◽  
pp. 6341-6350 ◽  
Author(s):  
Timothy B. Doyle ◽  
Andrew C. Hawkins ◽  
Linda L. McCarter

ABSTRACT Flagella act as semirigid helical propellers that are powered by reversible rotary motors. Two membrane proteins, MotA and MotB, function as a complex that acts as the stator and generates the torque that drives rotation. The genome sequence of Pseudomonas aeruginosa PAO1 contains dual sets of motA and motB genes, PA1460-PA1461 (motAB) and PA4954-PA4953 (motCD), as well as another gene, motY (PA3526), which is known to be required for motor function in some bacteria. Here, we show that these five genes contribute to motility. Loss of function of either motAB-like locus was dispensable for translocation in aqueous environments. However, swimming could be entirely eliminated by introduction of combinations of mutations in the two motAB-encoding regions. Mutation of both genes encoding the MotA homologs or MotB homologs was sufficient to abolish motility. Mutants carrying double mutations in nonequivalent genes (i.e., motA motD or motB motC) retained motility, indicating that noncognate components can function together. motY appears to be required for motAB function. The combination of motY and motCD mutations rendered the cells nonmotile. Loss of function of motAB, motY, or motAB motY produced similar phenotypes; although the swimming speed was only reduced to ∼85% of the wild-type speed, translocation in semisolid motility agar and swarming on the surface of solidified agar were severely impeded. Thus, the flagellar motor of P. aeruginosa represents a more complex configuration than the configuration that has been studied in other bacteria, and it enables efficient movement under different circumstances.

2002 ◽  
Vol 184 (4) ◽  
pp. 1172-1179 ◽  
Author(s):  
Thomas M. A. Gronewold ◽  
Dale Kaiser

ABSTRACT Cell-bound C-signal guides the building of a fruiting body and triggers the differentiation of myxospores. Earlier work has shown that transcription of the csgA gene, which encodes the C-signal, is directed by four genes of the act operon. To see how expression of the genes encoding components of the aggregation and sporulation processes depends on C-signaling, mutants with loss-of-function mutations in each of the act genes were investigated. These mutations were found to have no effect on genes that are normally expressed up to 3 h into development and are C-signal independent. Neither the time of first expression nor the rate of expression increase was changed in actA, actB, actC, or actD mutant strains. Also, there was no effect on A-signal production, which normally starts before 3 h. By contrast, the null act mutants have striking defects in C-signal production. These mutations changed the expression of four gene reporters that are related to aggregation and sporulation and are expressed at 6 h or later in development. The actA and actB null mutations substantially decreased the expression of all these reporters. The other act null mutations caused either premature expression to wild-type levels (actC) or delayed expression (actD), which ultimately rose to wild-type levels. The pattern of effects on these reporters shows how the C-signal differentially regulates the steps that together build a fruiting body and differentiate spores within it.


2014 ◽  
Vol 83 (3) ◽  
pp. 863-875 ◽  
Author(s):  
Alexandria A. Reinhart ◽  
Daniel A. Powell ◽  
Angela T. Nguyen ◽  
Maura O'Neill ◽  
Louise Djapgne ◽  
...  

Pseudomonas aeruginosais an opportunistic pathogen that requires iron to cause infection, but it also must regulate the uptake of iron to avoid iron toxicity. The iron-responsive PrrF1 and PrrF2 small regulatory RNAs (sRNAs) are part ofP. aeruginosa'siron regulatory network and affect the expression of at least 50 genes encoding iron-containing proteins. The genes encoding the PrrF1 and PrrF2 sRNAs are encoded in tandem inP. aeruginosa, allowing for the expression of a distinct, heme-responsive sRNA named PrrH that appears to regulate genes involved in heme metabolism. Using a combination of growth, mass spectrometry, and gene expression analysis, we showed that the ΔprrF1,2mutant, which lacks expression of the PrrF and PrrH sRNAs, is defective for both iron and heme homeostasis. We also identifiedphuS, encoding a heme binding protein involved in heme acquisition, andvreR, encoding a previously identified regulator ofP. aeruginosavirulence genes, as novel targets ofprrF-mediated heme regulation. Finally, we showed that theprrFlocus encoding the PrrF and PrrH sRNAs is required forP. aeruginosavirulence in a murine model of acute lung infection. Moreover, we showed that inoculation with a ΔprrF1,2deletion mutant protects against future challenge with wild-typeP. aeruginosa. Combined, these data demonstrate that theprrF-encoded sRNAs are critical regulators ofP. aeruginosavirulence.


2000 ◽  
Vol 182 (14) ◽  
pp. 3934-3941 ◽  
Author(s):  
Paul W. Hager ◽  
M. Worth Calfee ◽  
Paul V. Phibbs

ABSTRACT A cyclic version of the Entner-Doudoroff pathway is used byPseudomonas aeruginosa to metabolize carbohydrates. Genes encoding the enzymes that catabolize intracellular glucose to pyruvate and glyceraldehyde 3-phosphate are coordinately regulated, clustered at 39 min on the chromosome, and collectively form thehex regulon. Within the hex cluster is an open reading frame (ORF) with homology to the devB/SOLfamily of unidentified proteins. This ORF encodes a protein of either 243 or 238 amino acids; it overlaps the 5′ end of zwf (encodes glucose-6-phosphate dehydrogenase) and is followed immediately by eda (encodes the Entner-Doudoroff aldolase). The devB/SOL homolog was inactivated in P. aeruginosa PAO1 by recombination with a suicide plasmid containing an interrupted copy of the gene, creating mutant strain PAO8029. PAO8029 grows at 9% of the wild-type rate using mannitol as the carbon source and at 50% of the wild-type rate using gluconate as the carbon source. Cell extracts of PAO8029 were specifically deficient in 6-phosphogluconolactonase (Pgl) activity. The cloned devB/SOL homolog complemented PAO8029 to restore normal growth on mannitol and gluconate and restored Pgl activity. Hence, we have identified this gene as pgland propose that the devB/SOL family members encode 6-phosphogluconolactonases. Interestingly, three eukaryotic glucose-6-phosphate dehydrogenase (G6PDH) isozymes, from human, rabbit, and Plasmodium falciparum, contain Pgl domains, suggesting that the sequential reactions of G6PDH and Pgl are incorporated in a single protein. 6-Phosphogluconolactonase activity is induced in P. aeruginosa PAO1 by growth on mannitol and repressed by growth on succinate, and it is expressed constitutively in P. aeruginosa PAO8026 (hexR). Taken together, these results establish that Pgl is an essential enzyme of the cyclic Entner-Doudoroff pathway encoded by pgl, a structural gene of the hex regulon.


mBio ◽  
2020 ◽  
Vol 11 (4) ◽  
Author(s):  
Dallas L. Mould ◽  
Nico J. Botelho ◽  
Deborah A. Hogan

ABSTRACT The opportunistic pathogen Pseudomonas aeruginosa damages hosts through the production of diverse secreted products, many of which are regulated by quorum sensing (QS). The lasR gene, which encodes a central QS regulator, is frequently mutated in clinical isolates from chronic infections, and loss of LasR function (LasR−) generally impairs the activity of downstream QS regulators RhlR and PqsR. We found that in cocultures containing LasR+ and LasR− strains, LasR− strains hyperproduce the RhlR/RhlI-regulated antagonistic factors pyocyanin and rhamnolipids in diverse models and media and in different strain backgrounds. Diffusible QS autoinducers produced by the wild type were not required for this effect. Using transcriptomics, genetics, and biochemical approaches, we uncovered a reciprocal interaction between wild-type and lasR mutant pairs wherein the iron-scavenging siderophore pyochelin produced by the lasR mutant induced citrate release and cross-feeding from the wild type. Citrate, a metabolite often secreted in low iron environments, stimulated RhlR signaling and RhlI levels in LasR−but not in LasR+ strains. These studies reveal the potential for complex interactions between recently diverged, genetically distinct isolates within populations from single chronic infections. IMPORTANCE Coculture interactions between lasR loss-of-function and LasR+ Pseudomonas aeruginosa strains may explain the worse outcomes associated with the presence of LasR− strains. More broadly, this report illustrates how interactions within a genotypically diverse population, similar to those that frequently develop in natural settings, can promote unpredictably high virulence factor production.


2000 ◽  
Vol 182 (4) ◽  
pp. 1035-1045 ◽  
Author(s):  
Blaise R. Boles ◽  
Linda L. McCarter

ABSTRACT Vibrio parahaemolyticus possesses two types of flagella, polar and lateral, powered by distinct energy sources, which are derived from the sodium and proton motive forces, respectively. Although proton-powered flagella in Escherichia coli andSalmonella enterica serovar Typhimurium have been extensively studied, the mechanism of torque generation is still not understood. Molecular knowledge of the structure of the sodium-driven motor is only now being developed. In this work, we identify the switch components, FliG, FliM, and FliN, of the sodium-type motor. This brings the total number of genes identified as pertinent to polar motor function to seven. Both FliM and FliN possess charged domains not found in proton-type homologs; however, they can interact with the proton-type motor of E. coli to a limited extent. Residues known to be critical for torque generation in the proton-type motor are conserved in the sodium-type motor, suggesting a common mechanism for energy transfer at the rotor-stator interface regardless of the driving force powering rotation. Mutants representing a complete panel of insertionally inactivated switch and motor genes were constructed. All of these mutants were defective in sodium-driven swimming motility. Alkaline phosphatase could be fused to the C termini of MotB and MotY without abolishing motility, whereas deletion of the unusual, highly charged C-terminal domain of FliM disrupted motor function. All of the mutants retained proton-driven, lateral motility over surfaces. Thus, although central chemotaxis genes are shared by the polar and lateral systems, genes encoding the switch components, as well as the motor genes, are distinct for each motility system.


2019 ◽  
Vol 60 (10) ◽  
pp. 2307-2318
Author(s):  
Zhiyun Li ◽  
Weiping Mo ◽  
Liqiang Jia ◽  
Yong-Chao Xu ◽  
Weijiang Tang ◽  
...  

Abstract Chlorophyll biosynthesis plays essential roles in photosynthesis and plant growth in response to environmental conditions. The accumulation of excess chlorophyll biosynthesis intermediates under light results in the production of reactive oxygen species and oxidative stress. In this study, we identified a rice (Oryza sativa) mutant, oxidation under photoperiod (oxp), that displayed photobleached lesions on its leaves, reduced growth and decreased chlorophyll content during light/dark cycles or following a dark-to-light transition. The oxp mutant accumulated more chlorophyll precursors (5-aminolevulinic acid and protochlorophyllide) than the wild type in the dark, and more singlet oxygen following light exposure. Several singlet-oxygen-responsive genes were greatly upregulated in oxp, whereas the expression patterns of OsPORA and OsPORB, two genes encoding the chlorophyll biosynthesis enzyme NADPH:protochlorop hyllide oxidoreductase, were altered in de-etiolated oxp seedlings. Molecular and complementation studies revealed that oxp is a loss-of-function mutant in LOC_Os01g32730, a homolog of FLUORESCENT (FLU) in Arabidopsis thaliana. Rice PHYTOCHROME-INTERACTING FACTOR-LIKE14 (OsPIL14) transcription factor directly bound to the OsFLU1 promoter and activated its expression. Dark-grown transgenic rice seedlings overexpressing OsPIL14 accumulated more chlorophyll and turned green faster than the wild type upon light illumination. Thus, OsFLU1 is an important regulator of chlorophyll biosynthesis in rice.


Author(s):  
Zhengyu Wu ◽  
Maojin Tian ◽  
Rongjing Zhang ◽  
Junhua Yuan

We developed a robust bead assay for studying flagellar motor behavior of Pseudomonas aeruginosa . Using this assay, we studied the dynamics of the two stator systems in the flagellar motor. We found that the two sets of stators function differently, with MotAB stators providing higher total torque, and MotCD stators ensuring more stable motor speed. The motors in wild-type cells adjust the stator compositions according to the environment, resulting in an optimal performance in environmental exploration compared to mutants with one set of stators. The bead assay we developed here can be further used to study P. aeruginosa chemotaxis at the level of single cell using the motor behavior as the chemotaxis output. Importance Cells of Pseudomonas aeruginosa possess a single polar flagellum, driven by a rotatory motor powered by two sets of torque-generating units (stators). We developed a robust bead assay for studying the behavior of the flagellar motor in P. aeruginosa , by attaching a microsphere to shortened flagellar filament and using it as an indicator of motor rotation. Using this assay, we revealed the dynamics of the two stator systems in the flagellar motor, and found that the motors in wild-type cells adjust the stator compositions according to the environment, resulting in an optimal performance in environmental exploration compared to mutants with one set of stators.


2021 ◽  
Author(s):  
Lara Duran-Trio ◽  
Gabriella Fernandes-Pires ◽  
Jocelyn Grosse ◽  
Ines Soro-Arnaiz ◽  
Clothilde Roux-Petronelli ◽  
...  

Creatine (Cr) is a nitrogenous organic acid and plays roles as fast phosphate energy buffer to replenish ATP, osmolyte, antioxidant, neuromodulator, and as a compound with anabolic and ergogenic properties in muscle. Cr is taken from the diet or endogenously synthetized by the enzymes AGAT and GAMT, and specifically taken up by the transporter SLC6A8. Loss-of-function mutations in the genes encoding for the enzymes or the transporter cause Cerebral Creatine Deficiency Syndromes (CCDS). CCDS are characterized by brain Cr deficiency, intellectual disability with severe speech delay, behavioral troubles, epilepsy and motor dysfunction. Among CCDS, the X-linked Cr transporter deficiency (CTD) is the most prevalent with no efficient treatment so far. Different animal models of CTD show reduced brain Cr levels, cognitive deficiencies and together they cover other traits similar to those of patients. However, motor function was poorly explored in CTD models and some controversies in the phenotype exist in comparison with CTD patients. Our recently described Slc6a8Y389C knock-in (KI) rat model of CTD showed mild impaired motor function linked with morphological alterations in cerebellum, reduced muscular mass, Cr deficiency and increased guanidinoacetate content in muscle, although no consistent signs of muscle atrophy. Our results indicate that such motor dysfunction is due to both nervous and muscle dysfunction, suggesting that muscle strength and performance as well as neuronal connectivity might be affected by this Cr deficiency in muscle and brain.


2007 ◽  
Vol 189 (14) ◽  
pp. 5153-5160 ◽  
Author(s):  
Takuji Mashimo ◽  
Manami Hashimoto ◽  
Shigeru Yamaguchi ◽  
Shin-Ichi Aizawa

ABSTRACT Three flagellar proteins, FliG, FliM, and FliN (FliGMN), are the components of the C ring of the flagellar motor. The genes encoding these proteins are multifunctional; they show three different phenotypes (Fla−, Mot−, and Che−), depending on the sites and types of mutations. Some of the Mot− mutants previously characterized are found to be motile. Reexamination of all Mot− mutants in fliGMN genes so far studied revealed that many of them are actually temperature sensitive (TS); that is, they are motile at 20°C but nonmotile at 37°C. There were two types of TS mutants: one caused a loss of function that was not reversed by a return to the permissive temperature (rigid TS), and the other caused a loss that was reversed (hyper-TS). The rigid TS mutants showed an all-or-none phenotype; that is, once a structure was formed, the structure and function were stable against temperature shifts. All of fliM and fliN and most of the fliG TS mutants belong to this group. On the other hand, the hyper-TS mutants (three of the fliG mutants) showed a temporal swimming/stop phenotype, responding to temporal temperature shifts when the structure was formed at a permissive temperature. Those hyper-TS mutation sites are localized in the C-terminal domain of the FliG molecules at sites that are different from the previously proposed functional sites. We discuss a role for this new region of FliG in the torque generation of the flagellar motor.


2007 ◽  
Vol 20 (11) ◽  
pp. 1364-1375 ◽  
Author(s):  
Jayanand Boddu ◽  
Seungho Cho ◽  
Gary J. Muehlbauer

Fusarium head blight, caused primarily by Fusarium graminearum, is a major disease problem on barley (Hordeum vulgare L.). Trichothecene mycotoxins produced by the fungus during infection increase the aggressiveness of the fungus and promote infection in wheat (Triticum aestivum L.). Loss-of-function mutations in the TRI5 gene in F. graminearum result in the inability to synthesize trichothecenes and in reduced virulence on wheat. We examined the impact of pathogen-derived trichothecenes on virulence and the transcriptional differences in barley spikes infected with a trichothecene-producing wild-type strain and a loss-of-function tri5 trichothecene nonproducing mutant. Disease severity, fungal biomass, and floret necrosis and bleaching were reduced in spikes inoculated with the tri5 mutant strain compared with the wild-type strain, indicating that the inability to synthesize trichothecenes results in reduced virulence in barley. We detected 63 transcripts that were induced during trichothecene accumulation, including genes encoding putative trichothecene detoxification and transport proteins, ubiquitination-related proteins, programmed cell death-related proteins, transcription factors, and cytochrome P450s. We also detected 414 gene transcripts that were designated as basal defense response genes largely independent of trichothecene accumulation. Our results show that barley exhibits a specific response to trichothecene accumulation that can be separated from the basal defense response. We propose that barley responds to trichothecene accumulation by inducing at least two general responses. One response is the induction of genes encoding trichothecene detoxification and transport activities that may reduce the impact of trichothecenes. The other response is to induce genes encoding proteins associated with ubiquitination and cell death which may promote successful establishment of the disease.


Sign in / Sign up

Export Citation Format

Share Document