scholarly journals Role and Regulation of σs in General Resistance Conferred by Low-Shear Simulated Microgravity in Escherichia coli

2004 ◽  
Vol 186 (24) ◽  
pp. 8207-8212 ◽  
Author(s):  
S. V. Lynch ◽  
E. L. Brodie ◽  
A. Matin

ABSTRACT Life on Earth evolved in the presence of gravity, and thus it is of interest from the perspective of space exploration to determine if diminished gravity affects biological processes. Cultivation of Escherichia coli under low-shear simulated microgravity (SMG) conditions resulted in enhanced stress resistance in both exponential- and stationary-phase cells, making the latter superresistant. Given that microgravity of space and SMG also compromise human immune response, this phenomenon constitutes a potential threat to astronauts. As low-shear environments are encountered by pathogens on Earth as well, SMG-conferred resistance is also relevant to controlling infectious disease on this planet. The SMG effect resembles the general stress response on Earth, which makes bacteria resistant to multiple stresses; this response is σs dependent, irrespective of the growth phase. However, SMG-induced increased resistance was dependent on σs only in stationary phase, being independent of this sigma factor in exponential phase. σs concentration was some 30% lower in exponential-phase SMG cells than in normal gravity cells but was twofold higher in stationary-phase SMG cells. While SMG affected σs synthesis at all levels of control, the main reasons for the differential effect of this gravity condition on σs levels were that it rendered the sigma protein less stable in exponential phase and increased rpoS mRNA translational efficiency. Since σs regulatory processes are influenced by mRNA and protein-folding patterns, the data suggest that SMG may affect these configurations.

1980 ◽  
Vol 29 (2) ◽  
pp. 417-424
Author(s):  
Zvi Bar-Shavit ◽  
Rachel Goldman ◽  
Itzhak Ofek ◽  
Nathan Sharon ◽  
David Mirelman

Recently, it was suggested that a mannose-specific lectin on the bacterial cell surface is responsible for the recognition by phagocytic cells of certain nonopsonized Escherichia coli strains. In this study we assessed the interaction of two strains of E. coli at different phases of growth with a monolayer of mouse peritoneal macrophages and developed a direct method with [ 14 C]mannan to quantitate the bacterial mannose-binding activity. Normal-sized bacteria were obtained from logarithmic and stationary phases of growth. Nonseptated filamentous cells were formed by growing the organisms in the presence of cephalexin or at a restrictive temperature. Attachment to macrophages of all bacterial forms was inhibited by methyl α- d -mannoside and mannan but not by other sugars tested. The attachment of stationary phase and filamentous bacteria to macrophages, as well as their mannose-binding activity, was similar, whereas in the exponential-phase bacteria they were markedly reduced. The results show a linear relation between the two parameters ( R = 0.98, P < 0.001). The internalization of the filamentous cells attached to macrophages during 45 min of incubation was much less efficient (20%) compared to that of exponential-phase, stationary-phase, or antibody-coated filamentous bacteria (90%). The results indicate that the mannose-binding activity of E. coli determines the recognition of the organisms by phagocytes. They further suggest that administration of β-lactam antibiotics may impair elimination of certain pathogenic bacteria by inducing the formation of filaments which are inefficiently internalized by the host's phagocytic cells.


1972 ◽  
Vol 129 (2) ◽  
pp. 291-299 ◽  
Author(s):  
K. A. Abraham ◽  
K. J. Andersen ◽  
A. Rognes

1. RNA polymerase activity of Escherichia coli extracts prepared from cells in exponential and stationary phases of growth, when measured in the presence and absence of external template, showed significant qualitative differences. 2. In both extracts, polymerase activity was higher when assayed with external template, suggesting the presence of a pool of enzyme not bound to cellular DNA. 3. In the crude extract, the fraction of enzyme bound to cellular DNA is higher during the exponential phase of growth. 4. A method is described for the purification of enzyme molecules not tightly bound to cellular DNA from exponential- and stationary-phase cultures. 5. Purified enzyme preparations showed differences in template requirement and subunit composition. 6. On phosphocellulose chromatography of stationary-phase enzyme, a major portion of polymerase activity eluted from the column with 0.25m-KCl. In the case of exponential-phase enzyme, polymerase activity eluted from a phosphocellulose column mainly with 0.35m-KCl. 7. Enzyme assays done with excess of bacteriophage T4 DNA showed a strong inhibition of stationary-phase enzyme by this template. The exponential-phase enzyme was only slightly inhibited by excess of bacteriophage T4 DNA.


1997 ◽  
Vol 43 (12) ◽  
pp. 1157-1163 ◽  
Author(s):  
Holly S. Schrader ◽  
John O. Schrader ◽  
Jeremy J. Walker ◽  
Thomas A. Wolf ◽  
Kenneth W. Nickerson ◽  
...  

Bacteriophages specific for Pseudomonas aeruginosa and Escherichia coli were examined for their ability to multiply in stationary phase hosts. Four out of five bacteriophages tested, including E. coli bacteriophage T7M, were able to multiply in stationary phase hosts. The bacteriophage ACQ had a mean burst size of approximately 1000 in exponential phase P. aeruginosa hosts and 102 in starved hosts, with corresponding latent periods that increased from 65 to 210 min. The bacteriophage UT1 had a mean burst size of approximately 211 in exponential phase P. aeruginosa hosts and 11 in starved hosts, with latent periods that increased from a mean of 90 min in exponential phase hosts to 165 min in starved hosts. Bacteriophage multiplication occurred whether or not the hosts had entered stationary phase, either because the cultures had been incubated for 24 h or were starved. Significantly, bacteriophage multiplication occurred in P. aeruginosa, which had been starved for periods of 24 h, several weeks, or 5 years. Only one P. aeruginosa virus, BLB, was found to be incapable of multiplication in stationary phase hosts. These results reveal that starvation does not offer bacterial hosts refuge from bacteriophage infection and suggest that bacteriophages will be responsible for significant bacterial mortality in most natural ecosystems.Key words: bacteriophage multiplication, stationary phase, starvation.


Biologia ◽  
2011 ◽  
Vol 66 (5) ◽  
Author(s):  
Meltem Akbas ◽  
Tugrul Doruk ◽  
Serhat Ozdemir ◽  
Benjamin Stark

AbstractIn Escherichia coli, Vitreoscilla hemoglobin (VHb) protects against oxidative stress, perhaps, in part, by oxidizing OxyR. Here this protection, specifically VHb-associated effects on superoxide dismutase (SOD) and catalase levels, was examined. Exponential or stationary phase cultures of SOD+ or SOD− E. coli strains with or without VHb and oxyR antisense were treated with 2 mM hydrogen peroxide without sublethal peroxide induction, and compared to untreated control cultures. The hydrogen peroxide treatment was toxic to both SOD+ and SOD− cells, but much more to SOD− cells; expression of VHb in SOD+ strains enhanced this toxicity. In contrast, the presence of VHb was generally associated in the SOD+ background with a modest increase in SOD activity that was not greatly affected by oxyR antisense or peroxide treatment. In both SOD+ and SOD− backgrounds, VHb was associated with higher catalase activity both in the presence and absence of peroxide. Contrary to its stimulatory effects in stationary phase, in exponential phase oxyR antisense generally decreased VHb levels.


1999 ◽  
Vol 65 (3) ◽  
pp. 1308-1311 ◽  
Author(s):  
Sarah L. Jordan ◽  
Jayne Glover ◽  
Laura Malcolm ◽  
Fiona M. Thomson-Carter ◽  
Ian R. Booth ◽  
...  

ABSTRACT The acid tolerance of Escherichia coli O157:H7 strains can be overcome by addition of lactate, ethanol, or a combination of the two agents. Killing can be increased by as much as 4 log units in the first 5 min of incubation at pH 3 even for the most acid-tolerant isolates. Exponential-phase, habituated, and stationary-phase cells are all sensitive to incubation with lactate and ethanol. Killing correlates with disruption of the capacity for pH homeostasis. Habituated and stationary-phase cells can partially offset the effects of the lowering of cytoplasmic pH.


2021 ◽  
Author(s):  
Miki Umetani ◽  
Miho Fujisawa ◽  
Reiko Okura ◽  
Takashi Nozoe ◽  
Shoichi Suenaga ◽  
...  

Bacterial persistence is a phenomenon in which a small fraction of isogenic bacterial cells survives a lethal dose of antibiotics. It is generally assumed that persistence is caused by growth-arrested dormant cells generated prior to drug exposure. However, evidence from direct observation is scarce due to extremely low frequencies of persisters, and is limited to high persistence mutants or to conditions that significantly increase persister frequencies. Here, utilizing a microfluidic device with a membrane-covered microchamber array, we visualize the responses of more than 106 individual cells of wildtype Escherichia coli to lethal doses of antibiotics, sampling cells from different growth phases and culture media. We show that preexisting dormant persisters constitute only minor fractions of persistent cell lineages in populations sampled from exponential phase, and that most persistent cell lineages grew actively before drug exposure. Actively growing persisters exhibit radical morphological changes in response to drug exposure, including L-form-like morphologies or filamentation depending on antibiotic type, and restore their rod-like shape after drug removal. Incubating cells under stationary phase conditions increases both the frequency and the probability of survival of dormant cells. While dormant cells in late stationary phase express a general stress response regulator, RpoS, at high levels, persistent cell lineages tended to show low to moderate RpoS expression among the dormant cells. These results demonstrate that heterogeneous survival pathways may coexist within bacterial populations to achieve persistence and that persistence does not necessarily require dormant cells.


1997 ◽  
Vol 43 (11) ◽  
pp. 1036-1043 ◽  
Author(s):  
M. Gourmelon ◽  
M. Pommepuy ◽  
D. Touati ◽  
M. Cormier

We investigated the effect of visible light on Escherichia coli in seawater microcosms. Escherichia coli lost its ability to form colonies in marine environments when exposed to artificial continuous visible light. Survival of illuminated bacteria during the stationary phase was drastically reduced in the absence of the σsfactor (RpoS or KatF) that regulates numerous genes induced in this phase. In the stationary phase, double catalase mutants katE katG and mutants defective in the protein Dps (both catalase and Dps are involved in resistance to hydrogen peroxide (H2O2)), were more sensitive to light. In the exponential phase, a mutation in oxyR, the regulatory gene of the adaptive response to H2O2, increased sensitivity to light, further suggesting that deleterious effects might be associated with H2O2production. However, in the stationary phase, the katE katG dps mutant was considerably more resistant to visible light than the rpoS mutant, suggesting rpoS-dependent protection against deleterious effects other than those related to H2O2. The deleterious action of visible light was less important when the salinity decreased. In freshwater, rpoS and katE katG dps mutants did not show a drastic difference in sensitivity to light suggesting that osmolarity sensitizes E. coli to those deleterious effects of visible light that are unrelated to H2O2.Key words: Escherichia coli, stationary phase, RpoS, visible light, seawater.


1991 ◽  
Vol 54 (2) ◽  
pp. 90-93 ◽  
Author(s):  
CAROLINE E. O'NEILL ◽  
GARY K. BISSONNETTE

Four strains of Escherichia coli were examined for response to heat stress (60°C) as a function of physiological age and antecedent oxygen growth conditions. Exponential phase cells were more susceptible to heat than cells grown to the stationary phase. Anaerobically grown, exponential phase cells were more susceptible to thermal stress than were cells grown to a similar physiological state but under aerobic conditions. In the case of stationary phase cells, differences in response to heat stress as related to prior oxygen growth conditions were equivocal. Repair characteristics of thermally injured cells were also examined. Cells grown anaerobically prior to heat stress required 1.5 h longer than their aerobically grown counterparts to complete repair. These findings suggest that antecedent oxygen growth conditions influence the response of E. coli to thermal stress and perhaps, more generally, that persistence of environmentally stressed enteric microorganisms must be considered in relation to prior oxygen growth conditions in vivo.


2004 ◽  
Vol 70 (3) ◽  
pp. 1545-1554 ◽  
Author(s):  
Pilar Ma�as ◽  
Bernard M. Mackey

ABSTRACT The relationship between a loss of viability and several morphological and physiological changes was examined with Escherichia coli strain J1 subjected to high-pressure treatment. The pressure resistance of stationary-phase cells was much higher than that of exponential-phase cells, but in both types of cell, aggregation of cytoplasmic proteins and condensation of the nucleoid occurred after treatment at 200 MPa for 8 min. Although gross changes were detected in these cellular structures, they were not related to cell death, at least for stationary-phase cells. In addition to these events, exponential-phase cells showed changes in their cell envelopes that were not seen for stationary-phase cells, namely physical perturbations of the cell envelope structure, a loss of osmotic responsiveness, and a loss of protein and RNA to the extracellular medium. Based on these observations, we propose that exponential-phase cells are inactivated under high pressure by irreversible damage to the cell membrane. In contrast, stationary-phase cells have a cytoplasmic membrane that is robust enough to withstand pressurization up to very intense treatments. The retention of an intact membrane appears to allow the stationary-phase cell to repair gross changes in other cellular structures and to remain viable at pressures that are lethal to exponential-phase cells.


1999 ◽  
Vol 65 (7) ◽  
pp. 3048-3055 ◽  
Author(s):  
Kieran N. Jordan ◽  
Lynn Oxford ◽  
Conor P. O’Byrne

ABSTRACT Survival of a nontoxigenic isolate of Escherichia coliO157:H7 at low pH (pH 3.0) was examined over prolonged time periods for each of three population types: exponential-phase cells, stationary-phase cells, and acid-adapted exponential-phase cells. In each population, approximately 5 × 104 CFU ml−1 were detected after a 24-h incubation at pH 3.0. Even after 3 days at pH 3.0, significant numbers of survivors from each of the three populations could be detected. The high level of acid tolerance exhibited by these survivors was found to be quickly lost once they were transferred to conditions which permitted growth to resume, indicating that they were not mutants. Proton flux measurements on the three populations of cells revealed that the initial rates of viability loss at pH 3.0 correlated well with net proton accumulation. Cells showing a high initial rate of viability loss (exponential-phase cells) accumulated protons at the highest rate, whereas resistant populations (adapted or stationary-phase cells) accumulated protons only slowly. Differences in the protein composition of the cell envelope between the three populations were studied by two-dimensional polyacrylamide gel electrophoresis. Complex differences in the pattern of proteins expressed by each population were uncovered. The implications of these findings are discussed in the context of a possible model accounting for acid tolerance in this important food-borne pathogen.


Sign in / Sign up

Export Citation Format

Share Document