scholarly journals Markerless Mutagenesis in Methanococcus maripaludis Demonstrates Roles for Alanine Dehydrogenase, Alanine Racemase, and Alanine Permease

2005 ◽  
Vol 187 (3) ◽  
pp. 972-979 ◽  
Author(s):  
Brian C. Moore ◽  
John A. Leigh

ABSTRACT Among the archaea, Methanococcus maripaludis has the unusual ability to use l- or d-alanine as a nitrogen source. To understand how this occurs, we tested the roles of three adjacent genes encoding homologs of alanine dehydrogenase, alanine racemase, and alanine permease. To produce mutations in these genes, we devised a method for markerless mutagenesis that builds on previously established genetic tools for M. maripaludis. The technique uses a negative selection strategy that takes advantage of the ability of the M. maripaludis hpt gene encoding hypoxanthine phosphoribosyltransferase to confer sensitivity to the base analog 8-azahypoxanthine. In addition, we developed a negative selection method to stably incorporate constructs into the genome at the site of the upt gene encoding uracil phosphoribosyltransferase. Mutants with in-frame deletion mutations in the genes for alanine dehydrogenase and alanine permease lost the ability to grow on either isomer of alanine, while a mutant with an in-frame deletion mutation in the gene for alanine racemase lost only the ability to grow on d-alanine. The wild-type gene for alanine dehydrogenase, incorporated into the upt site, complemented the alanine dehydrogenase mutation. Hence, the permease is required for the transport of either isomer, the dehydrogenase is specific for the l isomer, and the racemase converts the d isomer to the l isomer. Phylogenetic analysis indicated that all three genes had been acquired by lateral gene transfer from the low-moles-percent G+C gram-positive bacteria.

2011 ◽  
Vol 78 (2) ◽  
pp. 402-410 ◽  
Author(s):  
Dagim Jirata Birri ◽  
Dag Anders Brede ◽  
Ingolf F. Nes

ABSTRACTIn this work, we purified and characterized a newly identified lantibiotic (salivaricin D) fromStreptococcus salivarius5M6c. Salivaricin D is a 34-amino-acid-residue peptide (3,467.55 Da); the locus of the gene encoding this peptide is a 16.5-kb DNA segment which contains genes encoding the precursor of two lantibiotics, two modification enzymes (dehydratase and cyclase), an ABC transporter, a serine-like protease, immunity proteins (lipoprotein and ABC transporters), a response regulator, and a sensor histidine kinase. The immunity gene (salI) was heterologously expressed in a sensitive indicator and provided significant protection against salivaricin D, confirming its immunity function. Salivaricin D is a naturally trypsin-resistant lantibiotic that is similar to nisin-like lantibiotics. It is a relatively broad-spectrum bacteriocin that inhibits members of many genera of Gram-positive bacteria, including the important human pathogensStreptococcus pyogenesandStreptococcus pneumoniae. Thus,Streptococcus salivarius5M6c may be a potential biological agent for the control of oronasopharynx-colonizing streptococcal pathogens or may be used as a probiotic bacterium.


1993 ◽  
Vol 11 (1) ◽  
pp. 103-113 ◽  
Author(s):  
A B Smit ◽  
A van Marle ◽  
R van Elk ◽  
J Bogerd ◽  
H van Heerikhuizen ◽  
...  

ABSTRACT Although insulins and structurally related peptides are found in vertebrates as well as in invertebrates, it is not clear whether the genes encoding these hormones have emerged from a single ancestral (insulin)-type of gene or, alternatively, have arisen independently through convergent evolution from different types of gene. To investigate this issue, we cloned the gene encoding the molluscan insulin-related peptide III (MIP III) from the freshwater snail, Lymnaea stagnalis. The predicted MIP III preprohormone had the overall organization of preproinsulin, with a signal peptide and A and B chains, connected by two putative C peptides. Although MIP III was found to share key features with vertebrate insulins, it also had unique structural characteristics in common with the previously identified MIPs I and II, thus forming a distinct class of MIP peptides within the insulin superfamily. MIP III is synthesized in neurones in the brain. It is encoded by a gene with the overall organization of the vertebrate insulin genes, with three exons and two introns, of which the second intron interrupts the coding region of the C peptides. Our data therefore demonstrate that in the Archaemetazoa, the common ancestor of the vertebrates and invertebrates, a primordial peptide with a two-chain insulin configuration encoded by a primordial insulin-type gene must have been present.


1998 ◽  
Vol 180 (23) ◽  
pp. 6276-6282 ◽  
Author(s):  
Lelia C. Raynal ◽  
Henry M. Krisch ◽  
Agamemnon J. Carpousis

ABSTRACT There has been increased interest in bacterial polyadenylation with the recent demonstration that 3′ poly(A) tails are involved in RNA degradation. Poly(A) polymerase I (PAP I) of Escherichia coli is a member of the nucleotidyltransferase (Ntr) family that includes the functionally related tRNA CCA-adding enzymes. Thirty members of the Ntr family were detected in a search of the current database of eubacterial genomic sequences. Gram-negative organisms from the β and γ subdivisions of the purple bacteria have two genes encoding putative Ntr proteins, and it was possible to predict their activities as either PAP or CCA adding by sequence comparisons with theE. coli homologues. Prediction of the functions of proteins encoded by the genes from more distantly related bacteria was not reliable. The Bacillus subtilis papS gene encodes a protein that was predicted to have PAP activity. We have overexpressed and characterized this protein, demonstrating that it is a tRNA nucleotidyltransferase. We suggest that the papS gene should be renamed cca, following the notation for itsE. coli counterpart. The available evidence indicates thatcca is the only gene encoding an Ntr protein, despite previous suggestions that B. subtilis has a PAP similar toE. coli PAP I. Thus, the activity involved in RNA 3′ polyadenylation in the gram-positive bacteria apparently resides in an enzyme distinct from its counterpart in gram-negative bacteria.


2006 ◽  
Vol 189 (3) ◽  
pp. 772-778 ◽  
Author(s):  
Zalán Szabó ◽  
Adriana Oliveira Stahl ◽  
Sonja-V. Albers ◽  
Jessica C. Kissinger ◽  
Arnold J. M. Driessen ◽  
...  

ABSTRACT Most secreted archaeal proteins are targeted to the membrane via a tripartite signal composed of a charged N terminus and a hydrophobic domain, followed by a signal peptidase-processing site. Signal peptides of archaeal flagellins, similar to class III signal peptides of bacterial type IV pilins, are distinct in that their processing sites precede the hydrophobic domain, which is crucial for assembly of these extracytoplasmic structures. To identify the complement of archaeal proteins with class III signal sequences, a PERL program (FlaFind) was written. A diverse set of proteins was identified, and many of these FlaFind positives were encoded by genes that were cotranscribed with homologs of pilus assembly genes. Moreover, structural conservation of primary sequences between many FlaFind positives and subunits of bacterial pilus-like structures, which have been shown to be critical for pilin assembly, have been observed. A subset of pilin-like FlaFind positives contained a conserved domain of unknown function (DUF361) within the signal peptide. Many of the genes encoding these proteins were in operons that contained a gene encoding a novel euryarchaeal prepilin-peptidase, EppA, homolog. Heterologous analysis revealed that Methanococcus maripaludis DUF361-containing proteins were specifically processed by the EppA homolog of this archaeon. Conversely, M. maripaludis preflagellins were cleaved only by the archaeal preflagellin peptidase FlaK. Together, the results reveal a diverse set of archaeal proteins with class III signal peptides that might be subunits of as-yet-undescribed cell surface structures, such as archaeal pili.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
José Francisco Cruz-Pérez ◽  
Roxana Lara-Oueilhe ◽  
Cynthia Marcos-Jiménez ◽  
Ricardo Cuatlayotl-Olarte ◽  
María Luisa Xiqui-Vázquez ◽  
...  

AbstractThe plant growth-promoting bacterium Azospirillum brasilense contains several genes encoding proteins involved in the biosynthesis and degradation of the second messenger cyclic-di-GMP, which may control key bacterial functions, such as biofilm formation and motility. Here, we analysed the function and expression of the cdgD gene, encoding a multidomain protein that includes GGDEF-EAL domains and CHASE and PAS domains. An insertional cdgD gene mutant was constructed, and analysis of biofilm and extracellular polymeric substance production, as well as the motility phenotype indicated that cdgD encoded a functional diguanylate protein. These results were correlated with a reduced overall cellular concentration of cyclic-di-GMP in the mutant over 48 h compared with that observed in the wild-type strain, which was recovered in the complemented strain. In addition, cdgD gene expression was measured in cells growing under planktonic or biofilm conditions, and differential expression was observed when KNO3 or NH4Cl was added to the minimal medium as a nitrogen source. The transcriptional fusion of the cdgD promoter with the gene encoding the autofluorescent mCherry protein indicated that the cdgD gene was expressed both under abiotic conditions and in association with wheat roots. Reduced colonization of wheat roots was observed for the mutant compared with the wild-type strain grown in the same soil conditions. The Azospirillum-plant association begins with the motility of the bacterium towards the plant rhizosphere followed by the adsorption and adherence of these bacteria to plant roots. Therefore, it is important to study the genes that contribute to this initial interaction of the bacterium with its host plant.


Genetics ◽  
1993 ◽  
Vol 133 (4) ◽  
pp. 999-1007
Author(s):  
R G Gregerson ◽  
L Cameron ◽  
M McLean ◽  
P Dennis ◽  
J Strommer

Abstract In most higher plants the genes encoding alcohol dehydrogenase comprise a small gene family, usually with two members. The Adh1 gene of Petunia has been cloned and analyzed, but a second identifiable gene was not recovered from any of three genomic libraries. We have therefore employed the polymerase chain reaction to obtain the major portion of a second Adh gene. From sequence, mapping and northern data we conclude this gene encodes ADH2, the major anaerobically inducible Adh gene of Petunia. The availability of both Adh1 and Adh2 from Petunia has permitted us to compare their structures and patterns of expression to those of the well-studied Adh genes of maize, of which one is highly expressed developmentally, while both are induced in response to hypoxia. Despite their evolutionary distance, evidenced by deduced amino acid sequence as well as taxonomic classification, the pairs of genes are regulated in strikingly similar ways in maize and Petunia. Our findings suggest a significant biological basis for the regulatory strategy employed by these distant species for differential expression of multiple Adh genes.


2021 ◽  
Vol 11 (6) ◽  
pp. 526
Author(s):  
Yejin Lee ◽  
Youn Jung Kim ◽  
Hong-Keun Hyun ◽  
Jae-Cheoun Lee ◽  
Zang Hee Lee ◽  
...  

Hereditary dentin defects can be categorized as a syndromic form predominantly related to osteogenesis imperfecta (OI) or isolated forms without other non-oral phenotypes. Mutations in the gene encoding dentin sialophosphoprotein (DSPP) have been identified to cause dentinogenesis imperfecta (DGI) Types II and III and dentin dysplasia (DD) Type II. While DGI Type I is an OI-related syndromic phenotype caused mostly by monoallelic mutations in the genes encoding collagen type I alpha 1 chain (COL1A1) and collagen type I alpha 2 chain (COL1A2). In this study, we recruited families with non-syndromic dentin defects and performed candidate gene sequencing for DSPP exons and exon/intron boundaries. Three unrelated Korean families were further analyzed by whole-exome sequencing due to the lack of the DSPP mutation, and heterozygous COL1A2 mutations were identified: c.3233G>A, p.(Gly1078Asp) in Family 1 and c.1171G>A, p.(Gly391Ser) in Family 2 and 3. Haplotype analysis revealed different disease alleles in Families 2 and 3, suggesting a mutational hotspot. We suggest expanding the molecular genetic etiology to include COL1A2 for isolated dentin defects in addition to DSPP.


2002 ◽  
Vol 46 (6) ◽  
pp. 1823-1830 ◽  
Author(s):  
Jean-Denis Docquier ◽  
Fabrizio Pantanella ◽  
Francesco Giuliani ◽  
Maria Cristina Thaller ◽  
Gianfranco Amicosante ◽  
...  

ABSTRACT The sequenced chromosome of Caulobacter crescentus CB15 encodes a hypothetical protein that exhibits significant similarity (30 to 35% identical residues) to metallo-β-lactamases of subclass B3. An allelic variant of this gene (divergent by 3% of its nucleotides) was cloned in Escherichia coli from C. crescentus type strain DSM4727. Expression studies confirmed the metallo-β-lactamase activity of its product, CAU-1. The enzyme produced in E. coli was purified by two ion-exchange chromatography steps. CAU-1 contains a 29-kDa polypeptide with an alkaline isoelectric pH (>9), and unlike the L1 enzyme of Stenotrophomonas maltophilia, the native form is monomeric. Kinetic analysis revealed a preferential activity toward penicillins, carbapenems, and narrow-spectrum cephalosporins, while oxyimino cephalosporins were poorly or not hydrolyzed. Affinities for the various β-lactams were poor overall (Km values were always >100 μM and often >400 μM). The interaction with divalent ion chelators appeared to occur by a mechanism similar to that prevailing in other members of subclass B3. In C. crescentus, the CAU-1 enzyme is produced independently of β-lactam exposure and, interestingly, the bla CAU determinant is bracketed by three other genes, including two genes encoding enzymes involved in methionine biosynthesis and a gene encoding a putative transcriptional regulator, in an operon-like structure. The CAU-1 enzyme is the first example of a metallo-β-lactamase in a member of the α subdivision of the class Proteobacteria.


1996 ◽  
Vol 16 (8) ◽  
pp. 4305-4311 ◽  
Author(s):  
X Liu ◽  
B Li ◽  
GorovskyMA

Although variants have been identified for every class of histone, their functions remain unknown. We have been studying the histone H2A variant hv1 in the ciliated protozoan Tetrahymena thermophila. Sequence analysis indicates that hv1 belongs to the H2A.F/Z type of histone variants. On the basis of the high degree of evolutionary conservation of this class of histones, they are proposed to have one or more distinct and essential functions that cannot be performed by their major H2A counterparts. Considerable evidence supports the hypothesis that the hv1 protein in T. thermophila and hv1-like proteins in other eukaryotes are associated with active chromatin. In T. thermophila, simple mass transformation and gene replacement techniques have recently become available. In this report, we demonstrate that either the HTA1 gene or the HTA2 gene, encoding the major H2As, can be completely replaced by disrupted genes in the polyploid, transcriptionally active macronucleus, indicating that neither of the two genes is essential. However, only some of the HTA3 genes encoding hv1 can be replaced by disrupted genes, indicating that the H2A.F/Z type variants have an essential function that cannot be performed by the major H2A genes. Thus, an essential gene in T. thermophila can be defined by the fact that it can be partially, but not completely, eliminated from the polyploid macronucleus. To our knowledge, this study represents the first use of gene disruption technology to study core histone gene function in any organism other than yeast and the first demonstration of an essential gene in T. thermophila using these methods. When a rescuing plasmid carrying a wild-type HTA3 gene was introduced into the T. thermophila cells, the endogenous chromosomal HTA3 could be completely replaced, defining a gene replacement strategy that can be used to analyze the function of essential genes.


2005 ◽  
Vol 51 (3) ◽  
pp. 251-259 ◽  
Author(s):  
Hidenori Hayashi ◽  
Takashi Abe ◽  
Mitsuo Sakamoto ◽  
Hiroki Ohara ◽  
Toshimichi Ikemura ◽  
...  

The aim of this study was to identify a novel 1,4-β-xylanase gene from the mixed genome DNA of human fecal bacteria without bacterial cultivation. Total DNA was isolated from a population of bacteria extracted from fecal microbiota. Using PCR, the gene fragments encoding 5 different family 10 xylanases (xyn10A, xyn10B, xyn10C, xyn10D, and xyn10E) were found. Amino acid sequences deduced from these genes were highly homologous with those of xylanases from anaerobic intestinal bacteria such as Bacteroides spp. and Prevotella spp. Self-organizing map (SOM) analysis revealed that xynA10 was classified into Bacteroidetes. To confirm that one of these genes encodes an active enzyme, a full-length xyn10A gene was obtained using nested primers specific to the internal fragments and random primers. The xyn10A gene encoding the xylanase Xyn10A consists of 1146 bp and encodes a protein of 382 amino acids and a molecular weight of 43 552. Xyn10A was a single module novel xylanase. Xyn10A was purified from a recombinant Escherichia coli strain and characterized. This enzyme was optimally active at 40 °C and stable up to 50 °C at pH 6.5 and over the pH range 4.0–11.0 at 25 °C. In addition, 2 ORFs (ORF1 and ORF2) were identified upstream of xyn10A. These results suggested that many unidentified xylanolytic bacteria exist in the human gut and may contribute to the breakdown of xylan which contains dietary fiber.Key words: xylanase, human gut, fecal microbiota, phylogenetic analysis, self-organizing map.


Sign in / Sign up

Export Citation Format

Share Document