scholarly journals Performance Evaluation of the SAMBA II SARS-CoV-2 Test for Point-of-Care Detection of SARS-CoV-2

2020 ◽  
Vol 59 (1) ◽  
pp. e01262-20 ◽  
Author(s):  
Sonny M. Assennato ◽  
Allyson V. Ritchie ◽  
Cesar Nadala ◽  
Neha Goel ◽  
Cuijuan Tie ◽  
...  

ABSTRACTNucleic acid amplification for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in respiratory samples is the standard method for diagnosis. The majority of this testing is centralized and therefore has turnaround times of several days. Point-of-care (POC) testing with rapid turnaround times would allow more effective triage in settings where patient management and infection control decisions need to be made rapidly. The inclusivity and specificity of the Simple AMplification-Based Assay (SAMBA) II SARS-CoV-2 test were determined by both in silico analyses of the primers and probes and wet testing. The SAMBA II SARS-CoV-2 test was evaluated for performance characteristics. Clinical performance was evaluated in residual combined throat/nose swabs and compared to that of the Public Health England real-time PCR assay targeting the RdRp gene. The SAMBA II SARS-CoV-2 test has an analytical sensitivity of 250 copies/ml for detecting two regions of the genome (open reading frame 1ab [ORF1ab] and nucleocapsid protein [N]). The clinical performance was evaluated in 172 residual combined nose/throat swabs provided by the Clinical Microbiology and Public Health Laboratory, Addenbrooke’s Hospital, Cambridge (CMPHL), which showed an estimated positive percent agreement of 98.9% (95% confidence interval [CI], 93.83 to 99.97) and negative percent agreement of 96.4% (95% CI, 89.92 to 99.26) compared to testing by the CMPHL. The data show that the SAMBA II SARS-CoV-2 test performs equivalently to the centralized testing methods, but with a shorter turnaround time of 86 to 101 min. Point-of-care tests such as SAMBA should enable rapid patient management and effective implementation of infection control measures.

Author(s):  
Sonny M Assennato ◽  
Allyson V Ritchie ◽  
Cesar Nadala ◽  
Neha Goel ◽  
Hongyi Zhang ◽  
...  

AbstractNucleic acid amplification for the detection of SARS-CoV-2 RNA in respiratory samples is the standard method for diagnosis. These tests are centralised and therefore turnaround times can be 2-5 days. Point-of-care testing with rapid turnaround times would allow more effective triage in settings where patient management and infection control decisions need to be made rapidly.Inclusivity and specificity of the SAMBA II SARS-CoV-2 assay was determined by in silico analyses of the primers and probes. Analytical and clinical sensitivity and specificity of the SAMBA II SARS-CoV-2 Test was evaluated for analytical sensitivity and specificity. Clinical performance was evaluated in residual clinical samples compared to the Public Health England reference tests.The limit of detection of the SAMBA II SARS-CoV-2 Test is 250 cp/mL and is specific for detection of 2 regions of the SARS-CoV-2 genome. The clinical sensitivity was evaluated in 172 clinical samples provided by the Clinical Microbiology and Public Health Laboratory, Addenbrooke’s Hospital, Cambridge (CMPHL), which showed a sensitivity of 98.9% (95% CI 94.03-99.97%), specificity of 100% (95% CI 95.55-100%), PPV of 100% and NPV of 98.78% (92.02-99.82%) compared to testing by CMPHLSAMBA detected 3 positive samples that were initially negative by PHE Test. The data shows that the SAMBA II SARS-CoV-2 Test performs equivalently to the centralised testing methods with a much quicker turnaround time. Point of care testing, such as SAMBA, should enable rapid patient management and effective implementation of infection control measures.


2019 ◽  
Vol 57 (6) ◽  
Author(s):  
David J. Hetem ◽  
Ingrid Bos-Sanders ◽  
Roel H. T. Nijhuis ◽  
Sven Tamminga ◽  
Livia Berlinger ◽  
...  

ABSTRACT Clostridioides difficile is the main causative agent of antibiotic-associated diarrhea. Prompt diagnosis is required for initiation of timely infection control measures and appropriate adjustment of antibiotic treatment. The cobas Cdiff assay for use on the cobas Liat system enables a diagnostic result in 20 minutes. A total of 252 prospective (n = 150) and retrospective (n = 102) stool specimens from The Netherlands, France, and Switzerland were tested on the cobas Cdiff assay using the Xpert C. difficile assay as a reference method. The overall positive and negative percent agreement (PPA and NPA, respectively) of the cobas Cdiff assay compared with the Xpert C. difficile assay was 98.0% (100/102; 95% confidence interval [CI], 93.1% to 99.5%) and 94.0% (141/150; 95% CI, 89.0% to 96.8%), respectively. When comparing the PPAs of cobas Cdiff and Xpert C. difficile with culture, the results were 91.7% (55/60; 95% CI, 81.9% to 96.4%) and 85.0% (51/60; 95% CI, 73.9% to 91.9%), respectively. The difference was not statistically significant. The cobas Cdiff assay offers a very rapid alternative for diagnosing C. difficile infection. The 20-minute turnaround time provides the potential for point-of-care testing so that adequate infection control measures can be initiated promptly.


2015 ◽  
Vol 29 (1) ◽  
pp. 1-27 ◽  
Author(s):  
Roberto Viau ◽  
Karen M. Frank ◽  
Michael R. Jacobs ◽  
Brigid Wilson ◽  
Keith Kaye ◽  
...  

SUMMARYCarbapenemases have become a significant mechanism for broad-spectrum β-lactam resistance inEnterobacteriaceaeand other Gram-negative bacteria such asPseudomonasandAcinetobacterspp. Intestinal carriage of carbapenemase-producing organisms (CPOs) is an important source of transmission. Isolation of carriers is one strategy that can be used to limit the spread of these bacteria. In this review, we critically examine the clinical performance, advantages, and disadvantages of methods available for the detection of intestinal carriage of CPOs. Culture-based methods (Centers for Disease Control and Prevention [CDC] protocols, chromogenic media, specialized agars, and double-disk synergy tests) for detecting carriage of CPOs are convenient due to their ready availability and low cost, but their limited sensitivity and long turnaround time may not always be optimal for infection control practices. Contemporary nucleic acid amplification techniques (NAATs) such as real-time PCR, hybridization assays, loop-mediated isothermal amplification (LAMP), or a combined culture and NAAT approach may provide fast results and/or added sensitivity and specificity compared with culture-based methods. Infection control practitioners and clinical microbiologists should be aware of the strengths and limitations of available methods to determine the most suitable approach for their medical facility to fit their infection control needs.


2021 ◽  
Vol 47 (12) ◽  
pp. 534-542
Author(s):  
Isabelle Goupil-Sormany ◽  
Jean Longtin ◽  
Jeannot Dumaresq ◽  
Marieve Jacob-Wagner ◽  
Frédéric Bouchard ◽  
...  

Background: This PRONTO study investigated the clinical performance of the Abbott ID NOWTM (IDN) COVID-19 diagnostic assay used at point of care and its impact on turnaround time for divulgation of test results. Methods: Prospective study conducted from December 2020 to February 2021 in acute symptomatic participants presenting in three walk-in centres in the province of Québec. Results: Valid paired samples were obtained from 2,372 participants. A positive result on either the IDN or the standard-of-care nucleic acid amplification test (SOC-NAAT) was obtained in 423 participants (prevalence of 17.8%). Overall sensitivity of IDN and SOC-NAAT were 96.4% (95% CI: 94.2–98.0%) and 99.1% (95% CI: 97.6–99.8), respectively; negative predictive values were 99.2% (95% CI: 98.7–99.6%) and 99.8% (95% CI: 99.5–100%), respectively. Turnaround time for positive results was significantly faster on IDN. Conclusion: In our experience, IDN use in symptomatic individuals in walk-in centres is a reliable sensitive alternative to SOC-NAAT without the need for subsequent confirmation of negative results. Such deployment can accelerate contact tracing, reduce the burden on laboratories and increase access to testing.


2020 ◽  
Vol 41 (S1) ◽  
pp. s458-s459
Author(s):  
Ishrat Kamal-Ahmed ◽  
Kate Tyner ◽  
Teresa Fitzgerald ◽  
Heather Adele Moulton-Meissner ◽  
Gillian McAllister ◽  
...  

Background: In April 2019, Nebraska Public Health Laboratory identified an NDM-producing Enterobacter cloacae from a urine sample from a rehabilitation inpatient who had recently received care in a specialized unit (unit A) of an acute-care hospital (ACH-A). After additional infections occurred at ACH-A, we conducted a public health investigation to contain spread. Methods: A case was defined as isolation of NDM-producing carbapenem-resistant Enterobacteriaceae (CRE) from a patient with history of admission to ACH-A in 2019. We conducted clinical culture surveillance, and we offered colonization screening for carbapenemase-producing organisms to all patients admitted to unit A since February 2019. We assessed healthcare facility infection control practices in ACH-A and epidemiologically linked facilities by visits from the ICAP (Infection Control Assessment and Promotion) Program. The recent medical histories of case patients were reviewed. Isolates were evaluated by whole-genome sequencing (WGS). Results: Through June 2019, 7 cases were identified from 6 case patients: 4 from clinical cultures and 3 from 258 colonization screens including 1 prior unit A patient detected as an outpatient (Fig. 1). Organisms isolated were Klebsiella pneumoniae (n = 5), E. cloacae (n = 1), and Citrobacter freundii (n = 1); 1 patient had both NDM-producing K. pneumoniae and C. freundii. Also, 5 case patients had overlapping stays in unit A during February–May 2019 (Fig. 2); common exposures in unit A included rooms in close proximity, inhabiting the same room at different times and shared caregivers. One case-patient was not admitted to unit A but shared caregivers, equipment, and devices (including a colonoscope) with other case patients while admitted to other ACH-A units. No case patients reported travel outside the United States. Screening at epidemiologically linked facilities and clinical culture surveillance showed no evidence of transmission beyond ACH-A. Infection control assessments at ACH-A revealed deficiencies in hand hygiene, contact precautions adherence, and incomplete cleaning of shared equipment within and used to transport to/from a treatment room in unit A. Following implementation of recommended infection control interventions, no further cases were identified. Finally, 5 K. pneumoniae of ST-273 were related by WGS including carriage of NDM-5 and IncX3 plasmid supporting transmission of this strain. Further analysis is required to relate IncX3 plasmid carriage and potential transmission to other organisms and sequence types identified in this study. Conclusions: We identified a multiorganism outbreak of NDM-5–producing CRE in an ACH specialty care unit. Transmission was controlled through improved infection control practices and extensive colonization screening to identify asymptomatic case-patients. Multiple species with NDM-5 were identified, highlighting the potential role of genotype-based surveillance.Funding: NoneDisclosures: Muhammad Salman Ashraf reports that he is the principal investigator for a study funded by an investigator-initiated research grant.


2020 ◽  
Vol 99 (5) ◽  
pp. 481-487 ◽  
Author(s):  
L. Meng ◽  
F. Hua ◽  
Z. Bian

The epidemic of coronavirus disease 2019 (COVID-19), originating in Wuhan, China, has become a major public health challenge for not only China but also countries around the world. The World Health Organization announced that the outbreaks of the novel coronavirus have constituted a public health emergency of international concern. As of February 26, 2020, COVID-19 has been recognized in 34 countries, with a total of 80,239 laboratory-confirmed cases and 2,700 deaths. Infection control measures are necessary to prevent the virus from further spreading and to help control the epidemic situation. Due to the characteristics of dental settings, the risk of cross infection can be high between patients and dental practitioners. For dental practices and hospitals in areas that are (potentially) affected with COVID-19, strict and effective infection control protocols are urgently needed. This article, based on our experience and relevant guidelines and research, introduces essential knowledge about COVID-19 and nosocomial infection in dental settings and provides recommended management protocols for dental practitioners and students in (potentially) affected areas.


Healthcare ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1593
Author(s):  
Kyoko Yoshioka-Maeda ◽  
Yuka Sumikawa ◽  
Noriha Tanaka ◽  
Chikako Honda ◽  
Riho Iwasaki-Motegi ◽  
...  

This cross-sectional study aimed to (1) describe the unclassified contents of telephone consultation services provided by a public health center during the first wave of COVID-19 in Japan and (2) examine whether the contents required assistance from public health nurses (PHNs). We analyzed a total of 207 calls in which the purpose of the call was unclassified into pre-set categories. PHNs transcribed the exact text of the consultation conversations recorded from 25 March to 20 April 2020 in City A. Approximately half of the calls were from residents. Seven categories were extracted through a qualitative content analysis. The most common topic was infection control measures, where the presence of COVID-19 infection was assumed (n = 62); the second most common was extreme anxiety and fear of infection (n = 50). Questions about the COVID-19 response system (n = 30), discrimination and misunderstandings about COVID-19 (n = 24), and response measures for COVID-19 outbreaks within organizations (n = 18) were also included. The unclassified consultations included various topics, several of which required the expertise of a PHN. Each local government should consider sharing and task-shifting telephone consultation services among PHNs and other staff to reduce their burden and allow them to concentrate on conducting infection control more effectively.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S811-S812 ◽  
Author(s):  
Johanna Sandlund ◽  
Joel Estis ◽  
Phoebe Katzenbach ◽  
Niamh Nolan ◽  
Kirstie Hinson ◽  
...  

Abstract Background Clostridioides difficile infection (CDI) is one of the most common healthcare-associated infections, resulting in significant morbidity, mortality, and economic burden. Diagnosis of CDI relies on the assessment of clinical presentation and laboratory tests. We have evaluated the clinical performance of ultrasensitive Single Molecule Counting technology for detection of C. difficile toxins A and B. Methods Stool specimens from 298 patients with suspected CDI were tested with nucleic acid amplification test (NAAT; BD MAX™ Cdiff assay or Xpert® C. difficile assay) and Singulex Clarity® C. difficile toxins A/B assay. Specimens with discordant results were tested with cell cytotoxicity neutralization assay (CCNA), and results were correlated with disease severity and outcome. Results There were 64 NAAT-positive and 234 NAAT-negative samples. Of the 32 NAAT+/Clarity− and 4 NAAT-/Clarity+ samples, there were 26 CCNA− and 4 CCNA- samples, respectively. CDI relapse or overall death was more common in NAAT+/toxin+ patients than in NAAT+/toxin− and NAAT−/toxin− patients, and NAAT+/toxin+ patients were 3.7 times more likely to experience relapse or death (Figure 1). The clinical specificity of Clarity and NAAT was 97.4% and 89.0%, respectively, and overdiagnosis was over three times more common in NAAT+/toxin− than in NAAT+/toxin+ patients (Figure 2). Negative percent agreement between NAAT and Clarity was 98.3%, and positive percent agreement increased from 50.0% to effective 84.2% and 94.1% after CCNA testing and clinical assessment. Conclusion The Clarity assay was superior to NAATs in diagnosis of CDI, by reducing overdiagnosis and thereby increasing clinical specificity, and presence of toxins was associated with disease severity and outcome. Disclosures All authors: No reported disclosures.


1997 ◽  
Vol 43 (2) ◽  
pp. 360-362 ◽  
Author(s):  
Christopher A Estey ◽  
Robin A Felder

Abstract The Axial Separation Module (ASM™), which separates whole-blood specimens serially in Axial Process Containers (APC™), was evaluated for clinical performance at the University of Virginia Health Sciences Center (UVA HSC) in a community-based outpatient laboratory (North Ridge Clinic). We hypothesized that moving the task of blood separation to point of care would reduce specimen turnaround time within the main laboratory. Blood drawn into an APC was separated in the ASM at point of care at the North Ridge Clinic. Blood drawn into a Vacutainer Tube™was separated in a conventional centrifuge at the main laboratory. Turnaround time was calculated for the “chem 17” test from files stored in our laboratory information system. Blood serially separated at point of care yielded turnaround time savings for specimens originating from the North Ridge Clinic. Average turnaround time decreased by 24%. Phlebotomists found no appreciable workload increase from incorporating the ASM as a point-of-care blood separation device. Phlebotomists also found that they could immediately detect hemolysis. We concluded that serial separation at point of care reduces specimen turnaround time at the main laboratory. The ASM/APC was found to be better suited for point-of-care blood separation than a conventional centrifuge. We speculate that immediate blood separation has the potential to improve the quality of analytical results.


2020 ◽  
Vol 58 (9) ◽  
Author(s):  
Elizabeth Smith ◽  
Wei Zhen ◽  
Ryhana Manji ◽  
Deborah Schron ◽  
Scott Duong ◽  
...  

ABSTRACT Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified in December 2019 and has quickly become a worldwide pandemic. In response, many diagnostic manufacturers have developed molecular assays for SARS-CoV-2 under the Food and Drug Administration (FDA) Emergency Use Authorization (EUA) pathway. This study compared three of these assays, the Hologic Panther Fusion SARS-CoV-2 assay (Fusion), the Hologic Aptima SARS-CoV-2 assay (Aptima), and the BioFire Defense COVID-19 test (BioFire), to determine analytical and clinical performance as well as workflow. All three assays showed similar limits of detection (LODs) using inactivated virus, with 100% detection, ranging from 500 to 1,000 genome equivalents/ml, whereas use of a quantified RNA transcript standard showed the same trend but had values ranging from 62.5 to 125 copies/ml, confirming variability in absolute quantification of reference standards. The clinical correlation found that the Fusion and BioFire assays had a positive percent agreement (PPA) of 98.7%, followed by the Aptima assay at 94.7%, compared to the consensus result. All three assays exhibited 100% negative percent agreement (NPA). Analysis of discordant results revealed that all four samples missed by the Aptima assay had cycle threshold (Ct) values of >37 by the Fusion assay. In conclusion, while all three assays showed similar relative LODs, we showed differences in absolute LODs depending on which standard was employed. In addition, the Fusion and BioFire assays showed better clinical performance, while the Aptima assay showed a modest decrease in overall PPA. These findings should be kept in mind when making platform testing decisions.


Sign in / Sign up

Export Citation Format

Share Document