scholarly journals Cholesterol Binding to the Transmembrane Region of a Group 2 Hemagglutinin (HA) of Influenza Virus Is Essential for Virus Replication, Affecting both Virus Assembly and HA Fusion Activity

2019 ◽  
Vol 93 (15) ◽  
Author(s):  
Bodan Hu ◽  
Chris Tina Höfer ◽  
Christoph Thiele ◽  
Michael Veit

ABSTRACTHemagglutinin (HA) of influenza virus is incorporated into cholesterol-enriched nanodomains of the plasma membrane. Phylogenetic group 2 HAs contain the conserved cholesterol consensus motif (CCM) YKLW in the transmembrane region. We previously reported that mutations in the CCM retarded intracellular transport of HA and decreased its nanodomain association. Here, we analyzed whether cholesterol interacts with the CCM. Incorporation of photocholesterol into HA was significantly reduced if the whole CCM is replaced by alanine, both using immunoprecipitated HA and when HA is embedded in the membrane. We next used reverse genetics to investigate the significance of the CCM for virus replication. No virus was rescued if the whole motif is exchanged (YKLW4A); singly (LA) or doubly (YK2A and LW2A) mutated virus showed decreased titers and a comparative fitness disadvantage. In polarized cells, transport of HA mutants to the apical membrane was not disturbed. Reduced amounts of HA and cholesterol were incorporated into the viral membrane. Mutant viruses exhibit a decrease in hemolysis, which is only partially corrected if the membrane is replenished with cholesterol. More specifically, viruses have a defect in hemifusion, as demonstrated by fluorescence dequenching. Cells expressing HA YKLW4A fuse with erythrocytes, but the number of events is reduced. Even after acidification unfused erythrocytes remain cell bound, a phenomenon not observed with wild-type HA. We conclude that cholesterol binding to a group 2 HA is essential for virus replication. It has pleiotropic effects on virus assembly and membrane fusion, mainly on lipid mixing and possibly a preceding step.IMPORTANCEThe glycoprotein HA is a major pathogenicity factor of influenza viruses. Whereas the structure and function of HA’s ectodomain is known in great detail, similar data for the membrane-anchoring part of the protein are missing. Here, we demonstrate that the transmembrane region of a group 2 HA interacts with cholesterol, the major lipid of the plasma membrane and the defining element of the viral budding site nanodomains of the plasma membrane. The cholesterol binding motif is essential for virus replication. Its partial removal affects various steps of the viral life cycle, such as assembly of new virus particles and their subsequent cell entry via membrane fusion. A cholesterol binding pocket in group 2 HAs might be a promising target for a small lipophilic drug that inactivates the virus.

2019 ◽  
Author(s):  
Bodan Hu ◽  
Chris Tina Höfer ◽  
Christoph Thiele ◽  
Michael Veit

ABSTRACTHemagglutinin (HA) of Influenza virus is incorporated into cholesterol enriched, nanodomains of the plasma membrane. Phylogenetic group 2 HAs contain the conserved cholesterol consensus motif (CCM) YKLW in the transmembrane region. We previously reported that mutations in the CCM retarded intracellular transport of HA and decreased its nanodomain association. Here we analyzed whether cholesterol interacts with the CCM. Incorporation of photocholesterol into HA was significantly reduced if the whole CCM is replaced by alanine, both using immunoprecipitated HA and when HA is embedded in the membrane. Next, we used reverse genetics to investigate the significance of the CCM for virus replication. No virus was rescued if the whole motif is exchanged (YKLW4A); single (LA) or double (YK2A and LW2A) mutated virus showed decreased titers and a comparative fitness disadvantage. In polarized cells transport of HA mutants to the apical membrane was not disturbed. Reduced amounts of HA and cholesterol were incorporated into the viral membrane. Mutant viruses exhibit a decrease in hemolysis, which is only partially corrected if the membrane is replenished with cholesterol. More specifically, viruses have a defect in hemifusion as demonstrated by fluorescence dequenching. Cells expressing HA-YKLW4A fuse with erythrocytes, but the number of events are reduced. Even after acidification unfused erythrocytes remain cell-bound, a phenomenon not observed with wildtype HA. We conclude that cholesterol-binding to a group 2 HA is essential for virus replication. It has pleiotropic effects on virus assembly and membrane fusion, mainly on lipid mixing and possibly a preceding step.IMPORTANCEThe glycoprotein hemagglutinin (HA) is a major pathogenicity factor of Influenza viruses. Whereas the structure and function of HA’s ectodomain is known in great detail, similar data for the membrane-anchoring part of the protein are missing. Here we demonstrate that the transmembrane region of a group 2 HA interacts with cholesterol, the major lipid of the plasma membrane and the defining element of the viral budding site nanodomains of the plama membrane. The cholesterol binding motif is essential for virus replication. Its partial removal affects various steps of the viral life cycle, such as assembly of new virus particles and their subsequent cell entry via membrane fusion. A cholesterol-binding pocket in group 2 HAs might be a promising target for a small lipophilic drug that inactivates the virus.


2012 ◽  
Vol 93 (2) ◽  
pp. 282-292 ◽  
Author(s):  
Bastian Thaa ◽  
Claudia Tielesch ◽  
Lars Möller ◽  
Armin O. Schmitt ◽  
Thorsten Wolff ◽  
...  

Influenza virus assembly and budding occur in the ‘budozone’, a coalesced raft domain in the plasma membrane. The viral transmembrane protein M2 is implicated in virus particle scission, the ultimate step in virus budding, probably by wedge-like insertion of an amphiphilic helix into the membrane. In order to do this, M2 is hypothesized to be targeted to the edge of the budozone, mediated by acylation and cholesterol binding. It was recently shown that acylation and cholesterol binding affect the membrane association of the cytoplasmic tail of M2 and targeting of the protein to coalesced rafts. This study tested whether combined removal of the acylation site (C50) and the cholesterol recognition/interaction amino acid consensus motifs (key residues Y52 and Y57) in the amphiphilic helix of M2 influenced virus formation. Recombinant influenza viruses were generated in the influenza strain A/WSN/33 background with mutations in one or both of these features. In comparison with the wild-type, all mutant viruses showed very similar growth kinetics in various cell types. Wild-type and mutant viruses differed in their relative M2 content but not regarding the major structural proteins. The morphology of the viruses was not affected by mutating M2. Moreover, wild-type and mutant viruses showed comparable competitive fitness in infected cells. Lastly, a global comparison of M2 sequences revealed that there are natural virus strains with M2 devoid of both lipid-association motifs. Taken together, these results indicate that the acylation and cholesterol-binding motifs in M2 are not crucial for the replication of influenza virus in cell culture, indicating that other factors can target M2 to the budding site.


2020 ◽  
Vol 94 (12) ◽  
Author(s):  
Thomas P. Peacock ◽  
Olivia C. Swann ◽  
Hamish A. Salvesen ◽  
Ecco Staller ◽  
P. Brian Leung ◽  
...  

ABSTRACT Avian influenza viruses occasionally infect and adapt to mammals, including humans. Swine are often described as “mixing vessels,” being susceptible to both avian- and human-origin viruses, which allows the emergence of novel reassortants, such as the precursor to the 2009 H1N1 pandemic. ANP32 proteins are host factors that act as influenza virus polymerase cofactors. In this study, we describe how swine ANP32A, uniquely among the mammalian ANP32 proteins tested, supports the activity of avian-origin influenza virus polymerases and avian influenza virus replication. We further show that after the swine-origin influenza virus emerged in humans and caused the 2009 pandemic, it evolved polymerase gene mutations that enabled it to more efficiently use human ANP32 proteins. We map the enhanced proviral activity of swine ANP32A to a pair of amino acids, 106 and 156, in the leucine-rich repeat and central domains and show these mutations enhance binding to influenza virus trimeric polymerase. These findings help elucidate the molecular basis for the mixing vessel trait of swine and further our understanding of the evolution and ecology of viruses in this host. IMPORTANCE Avian influenza viruses can jump from wild birds and poultry into mammalian species such as humans or swine, but they only continue to transmit if they accumulate mammalian adapting mutations. Pigs appear uniquely susceptible to both avian and human strains of influenza and are often described as virus “mixing vessels.” In this study, we describe how a host factor responsible for regulating virus replication, ANP32A, is different between swine and humans. Swine ANP32A allows a greater range of influenza viruses, specifically those from birds, to replicate. It does this by binding the virus polymerase more tightly than the human version of the protein. This work helps to explain the unique properties of swine as mixing vessels.


2000 ◽  
Vol 74 (10) ◽  
pp. 4634-4644 ◽  
Author(s):  
Jie Zhang ◽  
Andrew Pekosz ◽  
Robert A. Lamb

ABSTRACT Influenza viruses encoding hemagglutinin (HA) and neuraminidase (NA) glycoproteins with deletions in one or both cytoplasmic tails (HAt− or NAt−) have a reduced association with detergent-insoluble glycolipids (DIGs). Mutations which eliminated various combinations of the three palmitoylation sites in HA exhibited reduced amounts of DIG-associated HA in virus-infected cells. The influenza virus matrix (M1) protein was also found to be associated with DIGs, but this association was decreased in cells infected with HAt− or NAt− virus. Regardless of the amount of DIG-associated protein, the HA and NA glycoproteins were targeted primarily to the apical surface of virus-infected, polarized cells. The uncoupling of DIG association and apical transport was augmented by the observation that the influenza A virus M2 protein as well as the influenza C virus HA-esterase-fusion glycoprotein were not associated with DIGs but were apically targeted. The reduced DIG association of HAt− and NAt− is an intrinsic property of the glycoproteins, as similar reductions in DIG association were observed when the proteins were expressed from cDNA. Examination of purified virions indicated reduced amounts of DIG-associated lipids in the envelope of HAt− and NAt− viruses. The data indicate that deletion of both the HA and NA cytoplasmic tails results in reduced DIG association and changes in both virus polypeptide and lipid composition.


2020 ◽  
Author(s):  
Danqi Bao ◽  
Ruixue Xue ◽  
Min Zhang ◽  
Chenyang Lu ◽  
Tianxin Ma ◽  
...  

Neuraminidase (NA) has multiple functions in the life cycle of influenza virus, especially in the late stage of virus replication. Both of Hemagglutinin (HA) and NA are highly glycosylated proteins. N-linked glycosylation (NLG) of HA has been reported to contribute to immune escape and virulence of influenza viruses. However, the function of NLG of NA remains largely unclear. In this study, we found that NLG is critical for budding ability of NA. Tunicamycin treatment or NLG knock-out significantly inhibited the budding of NA. Further studies showed that the NLG knock-out caused attenuation of virus in vitro and in vivo. Notably the NLG at 219 position plays an important role in budding, replication, and virulence of H1N1 influenza virus. To explore the underlying mechanism, unfolded protein response (UPR) was determined in NLG knock-out NA overexpressed cells, which showed that the mutant NA was mainly located in ER, and the UPR markers BIP and p-eIF2α were upregulated, and XBP1 was downregulated. All the results indicated that NLG knock-out NA was stacked in ER and triggered UPR, which might shut down the budding process of NA. Overall, the study shed light on the function of NLG of NA in virus replication and budding. IMPORTANCE NA is a highly glycosylated protein. Nevertheless, how the NLG affects the function of NA protein remains largely unclear. In this study, we found that NLG plays important roles in budding and Neuraminidase activity of NA protein. Loss of NLG attenuated viral budding and replication. Especially the 219 NLG site mutation significantly attenuated the replication and virulence of H1N1 influenza virus in vitro and in vivo, which suggested that NLG of NA protein is a novel virulence marker for influenza viruses.


2018 ◽  
Vol 92 (11) ◽  
pp. e00232-18 ◽  
Author(s):  
Carolien E. van de Sandt ◽  
Mark R. Pronk ◽  
Carel A. van Baalen ◽  
Ron A. M. Fouchier ◽  
Guus F. Rimmelzwaan

ABSTRACT Influenza virus-specific CD8+ T lymphocytes (CTLs) contribute to clearance of influenza virus infections and reduce disease severity. Variation at amino acid residues located in or outside CTL epitopes has been shown to affect viral recognition by virus-specific CTLs. In the present study, we investigated the effect of naturally occurring variation at residues outside the conserved immunodominant and HLA*0201-restricted M158-66 epitope, located in the influenza virus M1 protein, on the extent of virus replication in the presence of CTLs specific for the epitope. To this end, we used isogenic viruses with an M1 gene segment derived from either an avian or a human influenza virus, HLA-transgenic human epithelial cells, human T cell clones specific for the M158-66 epitope or a control epitope, and a novel, purposely developed in vitro system to coculture influenza virus-infected cells with T cells. We found that the M gene segment of a human influenza A/H3N2 virus afforded the virus the capacity to replicate better in the presence of M158-66-specific CTLs than the M gene segment of avian viruses. These findings are in concordance with previously observed differential CTL activation, caused by variation at extra-epitopic residues, and may reflect an immune adaptation strategy of human influenza viruses that allows them to cope with potent CTL immunity to the M158-66 epitope in HLA-A*0201-positive individuals, resulting in increased virus replication and shedding and possibly increasing disease severity. IMPORTANCE Influenza viruses are among the leading causes of acute respiratory tract infections. CD8+ T lymphocytes display a high degree of cross-reactivity with influenza A viruses of various subtypes and are considered an important correlate of protection. Unraveling viral immune evasion strategies and identifying signs of immune adaptation are important for defining the role of CD8+ T lymphocytes in affording protection more accurately. Improving our insight into the interaction between influenza viruses and virus-specific CD8+ T lymphocyte immunity may help to advance our understanding of influenza virus epidemiology, aid in risk assessment of potentially pandemic influenza virus strains, and benefit the design of vaccines that induce more broadly protective immunity.


Author(s):  
Israa Elbashir ◽  
Heba Al Khatib ◽  
Hadi Yassine

Background: Influenza virus is a major cause of respiratory infections worldwide. Besides the common respiratory symptoms, namouras cases with gastrointestinal symptoms have been reported. Moreover, influenza virus has been detected in feces of up to 20.6 % of influenza-infected patients. Therefore, direct infection of intestinal cells with influenza virus is suspected; however, the mechanism of this infection has not been explored. AIM: To investigate influenza virus replication, cellular responses to infection, and virus evolution following serial infection in human Caucasian colon adenocarcinoma cells (Caco-2 cells). Method: Two influenza A subtypes (A/H3N2 and A/H1N1pdm 09) and one influenza B virus (B/Yamagata) were serially passaged in Caco-2. Quantitative PCR was used to study hormones and cytokines expression following infection. Deep sequencing analysis of viral genome was used to assess the virus evolution. Results: The replication capacity of the three viruses was maintained throughout 12 passages, with H3N2 virus being the fastest in adaptation. The expression of hormone and cytokines in Caco-2 cells was considerably different between the viruses and among the passages, however, a pattern of induction was observed at the late phase of infection. Deep sequencing analysis revealed a few amino acid substitutions in the HA protein of H3N2 and H1N1 viruses, mostly in the antigenic site. Moreover, virus evolution at the quasispecies level based on HA protein revealed that H3N2 and H1N1 harbored more diverse virus populations when compared to IBV, indicating their higher evolution within Caco-2 cells. Conclusion: The findings of this study indicate the possibility of influenza virus replication in intestinal cells. To further explain the gastrointestinal complications of influenza infections in-vivo experiments with different influenza viruses are needed.


2020 ◽  
Author(s):  
Chen Liang ◽  
Limei Zhu ◽  
Jun Chen

Abstract Background: Studies have shown that human interferon inducible transmembrane proteins (IFITM) family proteins have broad-spectrum antiviral capabilities. Preliminary studies in our laboratory have preliminarily proved that IFITMs have the effect of inhibiting influenza viruses. In order to further study its mechanism and role in the occurrence and development of influenza, relevant studies have been carried out.Methods: Fluorescence quantitative polymerase chain reaction (PCR) detection, yeast two-hybrid test and optical confocal microscopy were used to investigate the effect of hIFITM3 on influenza virus replication, the interaction with human abhydrolase domain containing 16A (hABHD16A) and the expression of inflammation-related factors.Results: In HEK293 cells, overexpression of hIFITM3 protein significantly inhibited the replication of influenza virus at 24h, 48h, and 72h; yeast two-hybrid experiment proved that IFITM3 interacts with ABHD16A; laser confocal microscopy observations showed that IFITM3 and ABHD16A co-localized in cell membrane area; the expression level of inflammation-related factors in cells overexpressing hIFITM3 or hABHD16A was detected by fluorescence quantitative PCR, and the results showed that the mRNA levels of interleukin (IL)-1β, IL-6, IL-10, tumor necrosis factor (TNF)-a and cyclooxygenase 2 (COX2) were significantly increased . But when IFITM3/ABHD16A was co-expressed, the mRNA expression levels of these cytokines were significantly reduced except for COX2. When influenza virus infected cells co-expressing IFITM3/ABHD16A, the expression level of inflammatory factors decreased compared with the control group, indicating that IFITM3 can play an important role in regulating inflammation balance.Conclusions: This study confirmed that hIFITM3 has an effect of inhibiting influenza virus replication. Furthermore, it was found that hIFITM3 interacts with hABHD16A, following which it can better inhibit the replication of influenza virus and the inflammatory response caused by the disease process.


2021 ◽  
Vol 102 (11) ◽  
Author(s):  
Nichole Orr-Burks ◽  
Jackelyn Murray ◽  
Kyle V. Todd ◽  
Abhijeet Bakre ◽  
Ralph A. Tripp

Influenza virus causes seasonal epidemics and sporadic pandemics resulting in morbidity, mortality, and economic losses worldwide. Understanding how to regulate influenza virus replication is important for developing vaccine and therapeutic strategies. Identifying microRNAs (miRs) that affect host genes used by influenza virus for replication can support an antiviral strategy. In this study, G-protein coupled receptor (GPCR) and ion channel (IC) host genes in human alveolar epithelial (A549) cells used by influenza virus for replication (Orr-Burks et al., 2021) were examined as miR target genes following A/CA/04/09- or B/Yamagata/16/1988 replication. Thirty-three miRs were predicted to target GPCR or IC genes and their miR mimics were evaluated for their ability to decrease influenza virus replication. Paired miR inhibitors were used as an ancillary measure to confirm or not the antiviral effects of a miR mimic. Fifteen miRs lowered influenza virus replication and four miRs were found to reduce replication irrespective of virus strain and type differences. These findings provide evidence for novel miR disease intervention strategies for influenza viruses.


2015 ◽  
Vol 465 (2) ◽  
pp. 305-314 ◽  
Author(s):  
Maren de Vries ◽  
Andreas Herrmann ◽  
Michael Veit

The external part of the transmembrane region of HA (haemagglutinin) of influenza virus contains a cholesterol consensus motif originally identified in G-protein-coupled receptors. Various mutations in this motif retard transport of HA through the Golgi and reduce raft association.


Sign in / Sign up

Export Citation Format

Share Document