scholarly journals Role of CD8+T Cells and Lymphoid Dendritic Cells in Protection from Ocular Herpes Simplex Virus 1 Challenge in Immunized Mice

2014 ◽  
Vol 88 (14) ◽  
pp. 8016-8027 ◽  
Author(s):  
Harry Matundan ◽  
Kevin R. Mott ◽  
Homayon Ghiasi

ABSTRACTThe development of immunization strategies to protect against ocular infection with herpes simplex virus 1 (HSV-1) must address the issue of the effects of the strategy on the establishment of latency in the trigeminal ganglia (TG). It is the reactivation of this latent virus that can cause recurrent disease and corneal scarring. CD8+T cells and dendritic cells (DCs) have been implicated in the establishment and maintenance of latency through several lines of inquiry. The objective of the current study was to use CD8α−/−and CD8β−/−mice to further evaluate the contributions of CD8+T cells and the CD8α+and CD8α−subpopulations of DCs to the protection afforded against ocular infection by immunization against HSV-1 and their potential to increase latency. Neutralizing antibody titers were similar in immunized CD8α−/−, CD8β−/−, and wild-type (WT) mice, as was virus replication in the eye. However, on day 3 postinfection (p.i.), the copy number of HSV-1 glycoprotein B (gB) was higher in the corneas and TG of CD8α−/−mice than those of WT mice, whereas on day 5 p.i. it was lower. As would be anticipated, the lack of CD8α+or CD8β+cells affected the levels of type I and type II interferon transcripts, but the effects were markedly time dependent and tissue specific. The levels of latent virus in the TG, as estimated by measurement of LAT transcripts andin vitroexplant reactivation assays, were lower in the immunized, ocularly challenged CD8α−/−and WT mice than in their CD8β−/−counterparts. Immunization reduced the expression of PD-1, a marker of T-cell exhaustion, in the TG of ocularly challenged mice, and mock-immunized CD8α−/−mice had lower levels of PD-1 expression and latency than mock-immunized WT or CD8β−/−mice. The expansion of the CD8α−subpopulation of DCs through injection of WT mice with granulocyte-macrophage colony-stimulating factor (GM-CSF) DNA reduced the amount of latency and PD-1 expression in the TG of infected mice. In contrast, injection of FMS-like tyrosine kinase 3 ligand (Flt3L) DNA, which expanded both subpopulations, was less effective. Our results suggest that the absence of both CD8α+T cells and CD8α+DCs does not reduce vaccine efficacy, either directly or indirectly, in challenged mice and that administration of GM-CSF appears to play a beneficial role in reducing latency and T-cell exhaustion.IMPORTANCEIn the past 2 decades, two large clinical HSV vaccine trials were performed, but both vaccine studies failed to reach their goals. Thus, as an alternative to conventional vaccine studies, we have used a different strategy to manipulate the host immune responses in an effort to induce greater protection against HSV infection. In lieu of the pleiotropic effect of CD8α+DCs in HSV-1 latency, in this report, we show that the absence of CD8α+T cells and CD8α+DCs has no adverse effect on vaccine efficacy. In line with our hypothesis, we found that pushing DC subpopulations from CD8α+DCs toward CD8α−DCs by injection of GM-CSF reduced the amount of latent virus and T-cell exhaustion in TG. While these studies point to the lack of a role for CD8α+T cells in vaccine efficacy, they in turn point to a role for GM-CSF in reducing HSV-1 latency.

2021 ◽  
Vol 7 (18) ◽  
pp. eabd2710
Author(s):  
Chen Zhu ◽  
Karen O. Dixon ◽  
Kathleen Newcomer ◽  
Guangxiang Gu ◽  
Sheng Xiao ◽  
...  

T cell exhaustion has been associated with poor prognosis in persistent viral infection and cancer. Conversely, in the context of autoimmunity, T cell exhaustion has been favorably correlated with long-term clinical outcome. Understanding the development of exhaustion in autoimmune settings may provide underlying principles that can be exploited to quell autoreactive T cells. Here, we demonstrate that the adaptor molecule Bat3 acts as a molecular checkpoint of T cell exhaustion, with deficiency of Bat3 promoting a profound exhaustion phenotype, suppressing autoreactive T cell–mediated neuroinflammation. Mechanistically, Bat3 acts as a critical mTORC2 inhibitor to suppress Akt function. As a result, Bat3 deficiency leads to increased Akt activity and FoxO1 phosphorylation, indirectly promoting Prdm1 expression. Transcriptional analysis of Bat3−/− T cells revealed up-regulation of dysfunction-associated genes, concomitant with down-regulation of genes associated with T cell effector function, suggesting that absence of Bat3 can trigger T cell dysfunction even under highly proinflammatory autoimmune conditions.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254243
Author(s):  
Meritxell Llorens-Revull ◽  
Maria Isabel Costafreda ◽  
Angie Rico ◽  
Mercedes Guerrero-Murillo ◽  
Maria Eugenia Soria ◽  
...  

Background & aims HCV CD4+ and CD8+ specific T cells responses are functionally impaired during chronic hepatitis C infection. DAAs therapies eradicate HCV infection in more than 95% of treated patients. However, the impact of HCV elimination on immune responses remain controversial. Here, we aimed to investigate whether HCV cure by DAAs could reverse the impaired immune response to HCV. Methods We analyzed 27 chronic HCV infected patients undergoing DAA treatment in tertiary care hospital, and we determined the phenotypical and functional changes in both HCV CD8+ and CD4+ specific T-cells before and after viral clearance. PD-1, TIM-3 and LAG-3 cell-surface expression was assessed by flow cytometry to determine CD4+ T cell exhaustion. Functional responses to HCV were analyzed by IFN-Ɣ ELISPOT, intracellular cytokine staining (IL-2 and IFN-Ɣ) and CFSE-based proliferation assays. Results We observed a significant decrease in the expression of PD-1 in CD4+ T-cells after 12 weeks of viral clearance in non-cirrhotic patients (p = 0.033) and in treatment-naive patients (p = 0.010), indicating a partial CD4 phenotype restoration. IFN-Ɣ and IL-2 cytokines production by HCV-specific CD4+ and CD8+ T cells remained impaired upon HCV eradication. Finally, a significant increase of the proliferation capacity of both HCV CD4+ and CD8+ specific T-cells was observed after HCV elimination by DAAs therapies. Conclusions Our results show that in chronically infected patients HCV elimination by DAA treatment lead to partial reversion of CD4+ T cell exhaustion. Moreover, proliferative capacity of HCV-specific CD4+ and CD8+ T cells is recovered after DAA’s therapies.


2021 ◽  
Vol 11 ◽  
Author(s):  
Weiqin Jiang ◽  
Yinjun He ◽  
Wenguang He ◽  
Guosheng Wu ◽  
Xile Zhou ◽  
...  

Tumor-specific CD8+T cells are exposed to persistent antigenic stimulation which induces a dysfunctional state called “exhaustion.” Though functioning to limit damage caused by immune response, T cell exhaustion leads to attenuated effector function whereby cytotoxic CD8+T cells fail to control tumor progression in the late stage. This pathway is a dynamic process from activation to “progenitor exhaustion” through to “terminally exhaustion” with distinct properties. With the rapid development of immunotherapy via enhancing T cell function, new studies are dissecting the mechanisms and identifying specific biomarkers of dynamic differentiation during the process of exhaustion. Further, although immune checkpoint inhibitors (ICIs) have achieved great success in clinical practice, most patients still show limited efficacy to ICIs. The expansion and differentiation of progenitor exhausted T cells explained the success of ICIs while the depletion of the progenitor T cell pool and the transient effector function of terminally exhausted T cells accounted for the failure of immune monotherapy in the context of exorbitant tumor burden. Thus, combination strategies are urgent to be utilized based on the reduction of tumor burden or the expansion of the progenitor T cell pool. In this review, we aim to introduce the concept of homeostasis of the activated and exhausted status of CD8+T cells in the tumor immune microenvironment, and present recent findings on dynamic differentiation process during T cell exhaustion and the implications for combination strategies in immune therapy.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A673-A673
Author(s):  
Rhodes Ford ◽  
Natalie Rittenhouse ◽  
Nicole Scharping ◽  
Paolo Vignali ◽  
Greg Delgoffe ◽  
...  

BackgroundCD8+ T cells are a fundamental component of the anti-tumor response; however, tumor-infiltrating CD8+ T cells (TIL) are rendered dysfunctional by the tumor microenvironment. CD8+ TIL display an exhausted phenotype with decreased cytokine expression and increased expression of co-inhibitory receptors (IRs), such as PD-1 and Tim-3. The acquisition of IRs mark the progression of dysfunctional TIL from progenitors (PD-1Low) to terminally exhausted (PD-1+Tim-3+). How the chromatin landscape changes during this progression has not been described.MethodsUsing a low-input ChIP-based assay called Cleavage Under Targets and Release Using Nuclease (CUT&RUN), we have profiled the histone modifications at the chromatin of tumor-infiltrating CD8+ T cell subsets to better understand the relationship between the epigenome and the transcriptome as TIL progress towards terminal exhaustion.ResultsWe have identified two epigenetic characteristics unique to terminally exhausted cells. First, we have identified a unique set of genes, characterized by active histone modifications that do not have correlated gene expression. These regions are enriched for AP-1 transcription factor motifs, yet most AP-1 family factors are actively downregulated in terminally exhausted cells, suggesting signals that promote downregulation of AP-1 expression negatively impacts gene expression. We have shown that inducing expression of AP-1 factors with a 41BB agonist correlates with increased expression of these anticorrelated genes. We have also found a substantial increase in the number of genes that exhibit bivalent chromatin marks, defined by the presence of both active (H3K4me3) and repressive (H3K27me3) chromatin modifications that inhibit gene expression. These bivalent genes in terminally exhausted T cells are not associated with plasticity and represent aberrant hypermethylation in response to tumor hypoxia, which is necessary and sufficient to promote downregulation of bivalent genes.ConclusionsOur study defines for the first time the roles of costimulation and the tumor microenvironment in driving epigenetic features of terminally exhausted tumor-infiltrating T cells. These results suggest that terminally exhausted T cells have genes that are primed for expression, given the right signals and are the basis for future work that will elucidate that factors that drive progression towards terminal T cell exhaustion at the epigenetic level and identify novel therapeutic targets to restore effector function of tumor T cells and mediate tumor clearance.


2021 ◽  
Author(s):  
Susetta Finotto ◽  
Patricia Haag ◽  
Darja Andreev ◽  
Nina Li ◽  
Alexander Kiefer ◽  
...  

Abstract Background: Serum 25(OH)-Vitamin D3 (VitD3) deficiency during infancy has been associated with asthma. The potential therapeutic role of VitD3 given in the airways and its interference with the allergen and Rhinovirus was the objective of this study. Methods: In two cohorts of children with and without asthma, serum levels of the C-reactive protein (CRP) were correlated to Serum VitD3 and in peripheral blood T cell inhibitor marker Programmed cell death protein 1 (PD1) mRNA was analyzed. In a murine model, VitD3 was given intranasally in vivo and in vitro to lung cells with allergen and Rhinovirus. Results: In the cohorts of pre-school age children without (control) asthma, CRP and VitD3 levels inversely correlated. In preschool asthmatic children that did not receive VitD3 supplementation as infant had more episode of asthma exacerbation associated with high CRP serum level. In peripheral blood cells from control but not asthmatic children with higher serum levels of VitD3 had lower PD1 mRNA levels. In murine model, OVA intranasal challenge induced Innate Lymphoid Cells type 2 (ILC2)-associated markers and Eosinophils in BALF and VitD3 inhibited lung inflammation and ILC2 markers. Furthermore, VitD3 given intranasally, induced CD4+T cells and reduced PD1, T regulatory cells in the lung. Similarly, VitD3 had a suppressive role on CD4+PD1+ T cells involved in T cell exhaustion in the airways in the absence of ST2 after Rhinovirus infection. Conclusion: These data support an inhibitory role of VitD3 on T cell exhaustion after allergen and rhinovirus infection that is relevant for pediatric asthma.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yunmeng Bai ◽  
Meiling Hu ◽  
Zixi Chen ◽  
Jinfen Wei ◽  
Hongli Du

T-cell exhaustion is one of the main reasons of tumor immune escape. Using single-cell transcriptome data of CD8+ T cells in multiple cancers, we identified different cell types, in which Pre_exhaust and exhausted T cells participated in negative regulation of immune system process. By analyzing the coexpression network patterns and differentially expressed genes of Pre_exhaust, exhausted, and effector T cells, we identified 35 genes related to T-cell exhaustion, whose high GSVA scores were associated with significantly poor prognosis in various cancers. In the differentially expressed genes, RGS1 showed the greatest fold change in Pre_exhaust and exhausted cells of three cancers compared with effector T cells, and high expression of RGS1 was also associated with poor prognosis in various cancers. Additionally, RGS1 protein was upregulated significantly in tumor tissues in the immunohistochemistry verification. Furthermore, RGS1 displayed positive correlation with the 35 genes, especially highly correlated with PDCD1, CTLA4, HAVCR2, and TNFRSF9 in CD8+ T cells and cancer tissues, indicating the important roles of RGS1 in CD8+ T-cell exhaustion. Considering the GTP-hydrolysis activity of RGS1 and significantly high mRNA and protein expression in cancer tissues, we speculated that RGS1 potentially mediate the T-cell retention to lead to the persistent antigen stimulation, resulting in T-cell exhaustion. In conclusion, our findings suggest that RGS1 is a new marker and promoting factor for CD8+ T-cell exhaustion and provide theoretical basis for research and immunotherapy of exhausted cells.


Author(s):  
Fei Li ◽  
Huiling Liu ◽  
Dan Zhang ◽  
Bingdong Zhu

Recent studies have shown that T cell metabolism has become a key regulator of T cell function and even can determine T cell function at last. Naïve T cells use fatty acid oxidation (FAO) to meet their energetic demands. Effector T cells mainly rely on aerobic glycolysis to supply energy and synthesize intermediate products. Similar to naïve T cells, memory T cells primarily utilize FAO for energy. Exhausted T cells, which can be induced by continuous activation of T cells upon persistently chronic infections such as tuberculosis, mainly rely on glycolysis for energy. The prevention and treatment of T cell exhaustion is facing great challenges. Interfering T cell metabolism may achieve the goal of prevention and treatment of T cell exhaustion. In this review, we compiled the researches related to exhausted T cell metabolism and put forward the metabolic intervention strategies to reverse T cell exhaustion at different stages to achieve the purpose of preventing and treating T cell exhaustion.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2563
Author(s):  
Valeria Barili ◽  
Andrea Vecchi ◽  
Marzia Rossi ◽  
Ilaria Montali ◽  
Camilla Tiezzi ◽  
...  

In chronic hepatitis B and C virus infections persistently elevated antigen levels drive CD8+ T cells toward a peculiar differentiation state known as T cell exhaustion, which poses crucial constraints to antiviral immunity. Available evidence indicates that T cell exhaustion is associated with a series of metabolic and signaling deregulations and with a very peculiar epigenetic status which all together lead to reduced effector functions. A clear mechanistic network explaining how intracellular metabolic derangements, transcriptional and signaling alterations so far described are interconnected in a comprehensive and unified view of the T cell exhaustion differentiation profile is still lacking. Addressing this issue is of key importance for the development of innovative strategies to boost host immunity in order to achieve viral clearance. This review will discuss the current knowledge in HBV and HCV infections, addressing how innate immunity, metabolic derangements, extensive stress responses and altered epigenetic programs may be targeted to restore functionality and responsiveness of virus-specific CD8 T cells in the context of chronic virus infections.


2007 ◽  
Vol 81 (14) ◽  
pp. 7647-7661 ◽  
Author(s):  
Anthony B. Nesburn ◽  
Ilham Bettahi ◽  
Gargi Dasgupta ◽  
Alami Aziz Chentoufi ◽  
Xiuli Zhang ◽  
...  

ABSTRACT We studied the phenotype and distribution of “naturally” occurring CD4+ CD25+ T regulatory cells (CD4+ CD25+ nTreg cells) resident in rabbit conjunctiva, the main T-cell inductive site of the ocular mucosal immune system, and we investigated their suppressive capacities using herpes simplex virus type 1 (HSV-1)-specific effector T (Teff) cells induced during ocular infection. The expression of CD4, CD25, CTLA4, GITR, and Foxp3 was examined by reverse transcription-PCR, Western blotting, and fluorescence-activated cell sorter analysis in CD45+ pan-leukocytes isolated from conjunctiva, spleen, and peripheral blood monocyte cells (PBMC) of HSV-1-infected and uninfected rabbits. Normal conjunctiva showed a higher frequency of CD4+ CD25(Bright+) T cells than did spleen and PBMC. These cells expressed high levels of Foxp3, GITR, and CTLA4 molecules. CD4+ CD25(Bright+) T cells were localized continuously along the upper and lower palpebral and bulbar conjunctiva, throughout the epithelium and substantia propria. Conjunctiva-derived CD4+ CD25(Bright+) T cells, but not CD4+ CD25(low) T cells, efficiently suppressed HSV-specific CD4+ and CD8+ Teff cells. The CD4+ CD25(Bright+) T-cell-mediated suppression was effective on both peripheral blood and conjunctiva infiltrating Teff cells and was cell-cell contact dependent but independent of interleukin-10 and transforming growth factor β. Interestingly, during an ocular herpes infection, there was a selective increase in the frequency and suppressive capacity of Foxp3+ CD4+ CD25(Bright+) T cells in conjunctiva but not in the spleen or in peripheral blood. Altogether, these results provide the first evidence that functional Foxp3+ CD4+ CD25(Bright+) Treg cells accumulate in the conjunctiva. It remains to be determined whether conjunctiva CD4+ CD25+ nTreg cells affect the topical/mucosal delivery of subunit vaccines that stimulate the ocular mucosal immune system.


Impact ◽  
2021 ◽  
Vol 2021 (8) ◽  
pp. 6-8
Author(s):  
Takeshi Yamada ◽  
Yuya Arakawa

Adoptive immunotherapy can be used to treat intractable cancers but this involves taking T cells from a patient and growing them in a laboratory and, once outside the body, the T cells can fall into a state of exhaustion. This is a barrier that Professor Takeshi Yamada, Department of Medical Technology, Immunology, Ehime Prefectural University of Health Sciences, Japan, is seeking to overcome. His work involves establishing a better understanding of the mechanisms of T cell exhaustion, which are currently not well known. Yamada and his team are focusing on intracellular energy metabolism and epigenetic control in mouse models with a view to finding a way to inhibit T cell exhaustion. The researchers are developing protocols to improve T cell function for immunotherapy by controlling epigenetic changes involved in glutamine metabolism, which induces T cell exhaustion. As previous research has focused on activating and proliferating tumour-specific T cells, Yamada's approach, with a focus on epigenetic control, is novel. The team is interested in T cell differentiation and its links to T cell exhaustion and so they are exploring the mechanism of T cell differentiation via intracellular energy metabolism and epigenetic changes and how this can impact on exhaustion. The researchers previously clarified that the enhancement of glutamine metabolism that occurs during the activation of T cell cultures causes epigenetic changes that induce T cell exhaustion and are expanding on this finding in order to develop a method to suppress T cell exhaustion via epigenetic control.


Sign in / Sign up

Export Citation Format

Share Document