scholarly journals Regulatory Interaction between the Cellular Restriction Factor IFI16 and Viral pp65 (pUL83) Modulates Viral Gene Expression and IFI16 Protein Stability

2016 ◽  
Vol 90 (18) ◽  
pp. 8238-8250 ◽  
Author(s):  
Matteo Biolatti ◽  
Valentina Dell'Oste ◽  
Sara Pautasso ◽  
Jens von Einem ◽  
Manfred Marschall ◽  
...  

ABSTRACTA key player in the intrinsic resistance against human cytomegalovirus (HCMV) is the interferon-γ-inducible protein 16 (IFI16), which behaves as a viral DNA sensor in the first hours postinfection and as a repressor of viral gene transcription in the later stages. Previous studies on HCMV replication demonstrated that IFI16 binds to the viral protein kinase pUL97, undergoes phosphorylation, and relocalizes to the cytoplasm of infected cells. In this study, we demonstrate that the tegument protein pp65 (pUL83) recruits IFI16 to the promoter of the UL54 gene and downregulates viral replication, as shown by use of the HCMV mutant v65Stop, which lacks pp65 expression. Interestingly, at late time points of HCMV infection, IFI16 is stabilized by its interaction with pp65, which stood in contrast to IFI16 degradation, observed in herpes simplex virus 1 (HSV-1)-infected cells. Moreover, we found that its translocation to the cytoplasm, in addition to pUL97, strictly depends on pp65, as demonstrated with the HCMV mutant RV-VM1, which expresses a form of pp65 unable to translocate into the cytoplasm. Thus, these data reveal a dual role for pp65: during early infection, it modulates IFI16 activity at the promoter of immediate-early and early genes; subsequently, it delocalizes IFI16 from the nucleus into the cytoplasm, thereby stabilizing and protecting it from degradation. Overall, these data identify a novel activity of the pp65/IFI16 interactome involved in the regulation of UL54 gene expression and IFI16 stability during early and late phases of HCMV replication.IMPORTANCEThe DNA sensor IFI16, a member of the PYHIN proteins, restricts HCMV replication by impairing viral DNA synthesis. Using a mutant virus lacking the tegument protein pp65 (v65Stop), we demonstrate that pp65 recruits IFI16 to the early UL54 gene promoter. As a putative counteraction to its restriction activity, pp65 supports the nucleocytoplasmic export of IFI16, which was demonstrated with the viral mutant RV-VM1 expressing a nuclearly retained pp65. These data reveal a dual role of pp65 in IFI16 regulation: in the early phase of HCMV infection, it contributes to viral evasion from IFI16 restriction activity, while at later time points, it promotes the nuclear delocalization of IFI16, thereby stabilizing and protecting it from degradation. In the present work, we further clarify the mechanisms HCMV relies on to overcome intracellular innate immune restriction and provide new insights into the relevance of DNA-sensing restriction factor IFI16 during HCMV infection.

2006 ◽  
Vol 80 (12) ◽  
pp. 5886-5896 ◽  
Author(s):  
Veronica Sanchez ◽  
Deborah H. Spector

ABSTRACT We have previously shown that the addition of the cyclin-dependent kinase (cdk) inhibitor Roscovitine at the beginning of infection of cells with human cytomegalovirus (HCMV) significantly disrupts immediate-early gene expression and the progression of the infection. In the present study, we have examined the effects of cdk inhibition on late viral events by delaying addition of Roscovitine until 24 h postinfection. Although viral DNA replication was inhibited two- to threefold by treatment of infected cells with Roscovitine, the drop did not correspond to the 1- to 2-log-unit decrease in virus titer. Quantification of viral DNA in the supernatant from cells revealed that there was a significant reduction in the production or release of extracellular particles. We observed a lag in the expression of several viral proteins but there was a significant decrease in the steady-state levels of IE2-86. Likewise, the steady-state level of the essential tegument protein UL32 (pp150) was reduced. The levels of pp150 and IE2-86 mRNA were not greatly affected by treatment with Roscovitine and thus did not correlate with the reduced levels of protein. In contrast, the expression of the tegument protein ppUL69 was higher in drug-treated samples, and the protein accumulated in a hyperphosphorylated form. ppUL69 localized to intranuclear aggregates that did not overlap with viral replication centers in cells treated with Roscovitine. Taken together, these data indicate that cdk activity is required at multiple steps during HCMV infection, including the expression, modification, and localization of virus-encoded proteins.


2014 ◽  
Vol 89 (2) ◽  
pp. 1070-1082 ◽  
Author(s):  
Ya-Ru Fu ◽  
Xi-Juan Liu ◽  
Xiao-Jun Li ◽  
Zhang-zhou Shen ◽  
Bo Yang ◽  
...  

ABSTRACTCongenital human cytomegalovirus (HCMV) infection is a leading cause of birth defects, primarily manifesting as neurological disorders. HCMV infection alters expression of cellular microRNAs (miRs) and induces cell cycle arrest, which in turn modifies the cellular environment to favor virus replication. Previous observations found that HCMV infection reduces miR-21 expression in neural progenitor/stem cells (NPCs). Here, we show that infection of NPCs and U-251MG cells represses miR-21 while increasing the levels of Cdc25a, a cell cycle regulator and known target of miR-21. These opposing responses to infection prompted an investigation of the relationship between miR-21, Cdc25a, and viral replication. Overexpression of miR-21 in NPCs and U-251MG cells inhibited viral gene expression, genome replication, and production of infectious progeny, while shRNA-knockdown of miR-21 in U-251MG cells increased viral gene expression. In contrast, overexpression of Cdc25a in U-251MG cells increased viral gene expression and production of infectious progeny and overcame the inhibitory effects of miR-21 overexpression. Three viral gene products—IE1, pp71, and UL26—were shown to inhibit miR-21 expression at the transcriptional level. These results suggest that Cdc25a promotes HCMV replication and elevation of Cdc25a levels after HCMV infection are due in part to HCMV-mediated repression of miR-21. Thus, miR-21 is an intrinsic antiviral factor that is modulated by HCMV infection. This suggests a role for miR-21 downregulation in the neuropathogenesis of HCMV infection of the developing CNS.IMPORTANCEHuman cytomegalovirus (HCMV) is a ubiquitous pathogen and has very high prevalence among population, especially in China, and congenital HCMV infection is a major cause for birth defects. Elucidating virus-host interactions that govern HCMV replication in neuronal cells is critical to understanding the neuropathogenesis of birth defects resulting from congenital infection. In this study, we confirm that HCMV infection downregulates miR-21 but upregulates Cdc25a. Further determined the negative effects of cellular miRNA miR-21 on HCMV replication in neural progenitor/stem cells and U-251MG glioblastoma/astrocytoma cells. More importantly, our results provide the first evidence that miR-21 negatively regulates HCMV replication by targeting Cdc25a, a vital cell cycle regulator. We further found that viral gene products of IE1, pp71, and UL26 play roles in inhibiting miR-21 expression, which in turn causes increases in Cdc25a and benefits HCMV replication. Thus, miR-21 appears to be an intrinsic antiviral factor that represents a potential target for therapeutic intervention.


2015 ◽  
Vol 89 (15) ◽  
pp. 7506-7520 ◽  
Author(s):  
Irene Lo Cigno ◽  
Marco De Andrea ◽  
Cinzia Borgogna ◽  
Silvia Albertini ◽  
Manuela M. Landini ◽  
...  

ABSTRACTThe human interferon-inducible IFI16 protein, an innate immune sensor of intracellular DNA, was recently demonstrated to act as a restriction factor for human cytomegalovirus (HCMV) and herpes simplex virus 1 (HSV-1) infection by inhibiting both viral-DNA replication and transcription. Through the use of two distinct cellular models, this study provides strong evidence in support of the notion that IFI16 can also restrict human papillomavirus 18 (HPV18) replication. In the first model, an immortalized keratinocyte cell line (NIKS) was used, in which the IFI16 protein was knocked down through the use of small interfering RNA (siRNA) technology and overexpressed following transduction with the adenovirus IFI16 (AdVIFI16) vector. The second model consisted of U2OS cells transfected by electroporation with HPV18 minicircles. In differentiated IFI16-silenced NIKS-HPV18 cells, viral-load values were significantly increased compared with differentiated control cells. Consistent with this, IFI16 overexpression severely impaired HPV18 replication in both NIKS and U2OS cells, thus confirming its antiviral restriction activity. In addition to the inhibition of viral replication, IFI16 was also able to reduce viral transcription, as demonstrated by viral-gene expression analysis in U2OS cells carrying episomal HPV18 minicircles and HeLa cells. We also provide evidence that IFI16 promotes the addition of heterochromatin marks and the reduction of euchromatin marks on viral chromatin at both early and late promoters, thus reducing both viral replication and transcription. Altogether, these results argue that IFI16 restricts chromatinized HPV DNA through epigenetic modifications and plays a broad surveillance role against viral DNA in the nucleus that is not restricted to herpesviruses.IMPORTANCEIntrinsic immunity is mediated by cellular restriction factors that are constitutively expressed and active even before a pathogen enters the cell. The host nuclear factor IFI16 acts as a sensor of foreign DNA and an antiviral restriction factor, as recently demonstrated by our group for human cytomegalovirus (HCMV) and herpes simplex virus 1 (HSV-1). Here, we provide the first evidence that IFI16 inhibits HPV18 replication by repressing viral-gene expression and replication. This antiviral restriction activity was observed in immortalized keratinocytes transfected with the religated genomes and in U2OS cells transfected with HPV18 minicircles, suggesting that it is not cell type specific. We also show that IFI16 promotes the assembly of heterochromatin on HPV DNA. These changes in viral chromatin structure lead to the generation of a repressive state at both early and late HPV18 promoters, thus implicating the protein in the epigenetic regulation of HPV gene expression and replication.


mBio ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. e02630-20
Author(s):  
Rebekah L. Mokry ◽  
Megan L. Schumacher ◽  
Neil Hogg ◽  
Scott S. Terhune

ABSTRACTNitric oxide is a versatile and critical effector molecule that can modulate many cellular functions. Although recognized as a regulator of infections, the inhibitory mechanism of nitric oxide against human cytomegalovirus (HCMV) replication remains elusive. We demonstrate that nitric oxide attenuates viral replication by interfering with HCMV-mediated modulation of several cellular processes. Nitric oxide exposure reduced HCMV genome synthesis and infectious viral progeny with cell-type-dependent differences observed. Mitochondrial respiration was severely reduced in both uninfected and HCMV-infected cells during exposure with little impact on ATP levels indicating changes in cellular metabolism. Metabolomics identified significantly altered small molecules in multiple pathways during nitric oxide exposure including nucleotide biosynthesis, tricarboxylic acid (TCA) cycle, and glutamine metabolism. Glutathione metabolites were increased coinciding with a reduction in the glutathione precursor glutamine. This shift was accompanied by increased antioxidant enzymes. Glutamine deprivation mimicked defects in HCMV replication and mitochondrial respiration observed during nitric oxide exposure. These data suggest that nitric oxide limits glutaminolysis by shuttling glutamine to glutathione synthesis. In addition, lipid intermediates were severely altered, which likely contributes to the observed increase in defective viral particles. Nitric oxide disrupts multiple cellular processes, and we had limited success in rescuing replication defects by supplementing with metabolic intermediates. Our studies indicate that nitric oxide attenuation of HCMV is multifactorial with interference in viral manipulation of cellular metabolism playing a central role.IMPORTANCE Human cytomegalovirus is a prevalent pathogen that can cause serious disease in patients with compromised immune systems, including transplant patients and during congenital infection. HCMV lytic replication likely occurs in localized sites of infection with immune cells infiltrating and releasing nitric oxide with other effector molecules. This nonspecific immune response results in both uninfected and infected cells exposed to high levels of nitric oxide. The absence of nitric oxide synthase has been associated with lethal HCMV infection. We demonstrate that nitric oxide inhibition of HCMV replication is multifactorial and cell type dependent. Our results indicate that nitric oxide controls replication by interfering with viral modulation of cellular metabolism while also affecting proliferation and mitochondrial respiration of neighboring uninfected cells. These studies identify the mechanism and contribution of nitric oxide during immune control of HCMV infection and provide insight into its role in other viral infections.


mBio ◽  
2014 ◽  
Vol 5 (6) ◽  
Author(s):  
Jason D. MacManiman ◽  
Andrew Meuser ◽  
Sara Botto ◽  
Patricia P. Smith ◽  
Fenyong Liu ◽  
...  

ABSTRACT Persistent human cytomegalovirus (HCMV) infection has been linked to several diseases, including atherosclerosis, transplant vascular sclerosis (TVS), restenosis, and glioblastoma. We have previously shown that factors secreted from HCMV-infected cells induce angiogenesis and that this process is due, at least in part, to increased secretion of interleukin-6 (IL-6). In order to identify the HCMV gene(s) responsible for angiogenesis promotion, we constructed a large panel of replication-competent HCMV recombinants. One HCMV recombinant deleted for UL1 to UL10 was unable to induce secretion of factors necessary for angiogenesis. Fine mapping using additional HCMV recombinants identified UL7 as a viral gene required for production of angiogenic factors from HCMV-infected cells. Transient expression of pUL7 induced phosphorylation of STAT3 and ERK1/2 MAP kinases and production of proangiogenic factors, including IL-6. Addition of recombinant pUL7 to cells was sufficient for angiogenesis and was again associated with increased IL-6 expression. Analysis of the UL7 structure revealed a conserved domain similar to the immunoglobulin superfamily domain and related to the N-terminal V-like domain of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1). Our report therefore identifies UL7 as a novel HCMV-encoded molecule that is both structurally and functionally related to cellular CEACAM1, a proangiogenic factor highly expressed during vasculogenesis. IMPORTANCE A hallmark of cytomegalovirus (CMV) infection is its ability to modulate the host cellular machinery, resulting in the secretion of factors associated with long-term diseases such as vascular disorders and cancer. We previously demonstrated that HCMV infection alters the types and quantities of bioactive proteins released from cells (designated the HCMV secretome) that are involved in the promotion of angiogenesis and wound healing. A key proangiogenic and antiapoptotic factor identified from a proteomic-based approach was IL-6. In the present report, we show for the first time that HCMV UL7 encodes a soluble molecule that is a structural and functional homologue of the CEACAM1 proangiogenic cellular factor. This report thereby identifies a critical component of the HCMV secretome that may be responsible, at least in part, for the vascular dysregulation associated with persistent HCMV infection.


2017 ◽  
Vol 92 (6) ◽  
Author(s):  
Matteo Biolatti ◽  
Valentina Dell'Oste ◽  
Sara Pautasso ◽  
Francesca Gugliesi ◽  
Jens von Einem ◽  
...  

ABSTRACTThe innate immune response plays a pivotal role during human cytomegalovirus (HCMV) primary infection. Indeed, HCMV infection of primary fibroblasts rapidly triggers strong induction of type I interferons (IFN-I), accompanied by proinflammatory cytokine release. Here, we show that primary human foreskin fibroblasts (HFFs) infected with a mutant HCMV TB40/E strain unable to express UL83-encoded pp65 (v65Stop) produce significantly higher IFN-β levels than HFFs infected with the wild-type TB40/E strain or the pp65 revertant (v65Rev), suggesting that the tegument protein pp65 may dampen IFN-β production. To clarify the mechanisms through which pp65 inhibits IFN-β production, we analyzed the activation of the cGAS/STING/IRF3 axis in HFFs infected with either the wild type, the revertant v65Rev, or the pp65-deficient mutant v65Stop. We found that pp65 selectively binds to cGAS and prevents its interaction with STING, thus inactivating the signaling pathway through the cGAS/STING/IRF3 axis. Consistently, addition of exogenous cGAMP to v65Rev-infected cells triggered the production of IFN-β levels similar to those observed with v65Stop-infected cells, confirming that pp65 inactivation of IFN-β production occurs at the cGAS level. Notably, within the first 24 h of HCMV infection, STING undergoes proteasome degradation independently of the presence or absence of pp65. Collectively, our data provide mechanistic insights into the interplay between HCMV pp65 and cGAS, leading to subsequent immune evasion by this prominent DNA virus.IMPORTANCEPrimary human foreskin fibroblasts (HFFs) produce type I IFN (IFN-I) when infected with HCMV. However, we observed significantly higher IFN-β levels when HFFs were infected with HCMV that was unable to express UL83-encoded pp65 (v65Stop), suggesting that pp65 (pUL83) may constitute a viral evasion factor. This study demonstrates that the HCMV tegument protein pp65 inhibits IFN-β production by binding and inactivating cGAS early during infection. In addition, this inhibitory activity specifically targets cGAS, since it can be bypassed via the addition of exogenous cGAMP, even in the presence of pp65. Notably, STING proteasome-mediated degradation was observed in both the presence and absence of pp65. Collectively, our data underscore the important role of the tegument protein pp65 as a critical molecular hub in HCMV's evasion strategy against the innate immune response.


2002 ◽  
Vol 46 (2) ◽  
pp. 478-486 ◽  
Author(s):  
Paula M. Krosky ◽  
Katherine Z. Borysko ◽  
M. Reza Nassiri ◽  
Rodrigo V. Devivar ◽  
Roger G. Ptak ◽  
...  

ABSTRACT We have previously reported that 2,5,6-trichloro-1-(β-d-ribofuranosyl)benzimidazole (TCRB) and its 2-bromo analog (2-bromo-5,6-dichloro-1-(β-d-ribofuranosy)benzimidazole [BDCRB]) are potent and selective inhibitors of human cytomegalovirus (HCMV) replication that block viral DNA maturation via HCMV gene products UL89 and UL56. To determine if phosphorylation is required for antiviral activity, the in vitro metabolism of BDCRB was examined and the antiviral activities of nonphosphorylatable 5′-deoxy analogs were determined. Reverse-phase high-performance liquid chromatography (HPLC) analysis of extracts from uninfected and HCMV-infected cells incubated with [3H]BDCRB revealed two major metabolites. Both were less polar than naturally occurring nucleoside monophosphates, but one peak coeluted with a BDCRB-5′-monophosphate (BDCRB-5′-MP) standard. Further analysis revealed, however, that neither metabolite partitioned with BDCRB-5′-MP on anion-exchange HPLC. Their retention patterns were not affected by incubation with alkaline phosphatase, thereby establishing that the compounds were not nucleoside 5′-monophosphates. Both compounds were detected in uninfected and HCMV-infected cells and in mouse live extracts, but neither has been identified. Like TCRB and BDCRB, the nonphosphorylatable 5′-deoxy analogs were potent and selective inhibitors of HCMV replication. The 5′-deoxy analogs maintained inhibition of HCMV replication upon removal of BDCRB, whereas an inhibitor of DNA synthesis did not. Similar to TCRB, its 5′-deoxy analog (5′-dTCRB) did not affect viral DNA synthesis, but 5′-dTCRB did inhibit viral DNA maturation to genome-length units. Additionally, virus isolates resistant to TCRB were also resistant to 5′-dTCRB and the 5′-deoxy analog of BDCRB. Taken together, these results confirm that TCRB, BDCRB, and their 5′-deoxy analogs have common mechanisms of action and establish that these benzimidazole ribonucleosides, unlike other antiviral nucleosides, do not require phosphorylation at the 5′ position for antiviral activity.


2019 ◽  
Vol 93 (21) ◽  
Author(s):  
Yuecheng Xi ◽  
Samuel Harwood ◽  
Lisa M. Wise ◽  
John G. Purdy

ABSTRACT Human cytomegalovirus (HCMV) replication requires host metabolism. Infection alters the activity in multiple metabolic pathways, including increasing fatty acid elongation and lipid synthesis. The virus-host interactions regulating the metabolic changes associated with replication are essential for infection. While multiple host factors, including kinases and transcription factors, important for metabolic changes that occur following HCMV infection have been identified, little is known about the viral factors required to alter metabolism. In this study, we tested the hypothesis that pUL37x1 is important for the metabolic remodeling that is necessary for HCMV replication using a combination of metabolomics, lipidomics, and metabolic tracers to measure fatty acid elongation. We observed that fibroblast cells infected with wild-type (WT) HCMV had levels of metabolites similar to those in cells infected with a mutant virus lacking the UL37x1 gene, subUL37x1. However, we found that relative to WT-infected cells, subUL37x1-infected cells had reduced levels of two host proteins that were previously demonstrated to be important for lipid metabolism during HCMV infection: fatty acid elongase 7 (ELOVL7) and the endoplasmic reticulum (ER) stress-related kinase PERK. Moreover, we observed that HCMV infection results in an increase in phospholipids with very-long-chain fatty acid tails (PL-VLCFAs) that contain 26 or more carbons in one of their two tails. The levels of many PL-VLCFAs were lower in subUL37x1-infected cells than in WT-infected cells. Overall, we conclude that although pUL37x1 is not necessary for network-wide metabolic changes associated with HCMV infection, it is important for the remodeling of a subset of metabolic changes that occur during infection. IMPORTANCE Human cytomegalovirus (HCMV) is a common pathogen that asymptomatically infects most people and establishes a lifelong infection. However, HCMV can cause end-organ disease that results in death in the immunosuppressed and is a leading cause of birth defects. HCMV infection depends on host metabolism, including lipid metabolism. However, the viral mechanisms for remodeling of metabolism are poorly understood. In this study, we demonstrate that the viral UL37x1 protein (pUL37x1) is important for infection-associated increases in lipid metabolism, including fatty acid elongation to produce very-long-chain fatty acids (VLCFAs). Furthermore, we found that HCMV infection results in a significant increase in phospholipids, particularly those with VLCFA tails (PL-VLCFAs). We found that pUL37x1 was important for the high levels of fatty acid elongation and PL-VLCFA accumulation that occur in HCMV-infected cells. Our findings identify a viral protein that is important for changes in lipid metabolism that occur following HCMV infection.


2020 ◽  
Vol 16 (12) ◽  
pp. e1009130
Author(s):  
Akshamal M. Gamage ◽  
Kai Sen Tan ◽  
Wharton O. Y. Chan ◽  
Jing Liu ◽  
Chee Wah Tan ◽  
...  

The novel coronavirus SARS-CoV-2 is the causative agent of Coronavirus Disease 2019 (COVID-19), a global healthcare and economic catastrophe. Understanding of the host immune response to SARS-CoV-2 is still in its infancy. A 382-nt deletion strain lacking ORF8 (Δ382 herein) was isolated in Singapore in March 2020. Infection with Δ382 was associated with less severe disease in patients, compared to infection with wild-type SARS-CoV-2. Here, we established Nasal Epithelial cells (NECs) differentiated from healthy nasal-tissue derived stem cells as a suitable model for the ex-vivo study of SARS-CoV-2 mediated pathogenesis. Infection of NECs with either SARS-CoV-2 or Δ382 resulted in virus particles released exclusively from the apical side, with similar replication kinetics. Screening of a panel of 49 cytokines for basolateral secretion from infected NECs identified CXCL10 as the only cytokine significantly induced upon infection, at comparable levels in both wild-type and Δ382 infected cells. Transcriptome analysis revealed the temporal up-regulation of distinct gene subsets during infection, with anti-viral signaling pathways only detected at late time-points (72 hours post-infection, hpi). This immune response to SARS-CoV-2 was significantly attenuated when compared to infection with an influenza strain, H3N2, which elicited an inflammatory response within 8 hpi, and a greater magnitude of anti-viral gene up-regulation at late time-points. Remarkably, Δ382 induced a host transcriptional response nearly identical to that of wild-type SARS-CoV-2 at every post-infection time-point examined. In accordance with previous results, Δ382 infected cells showed an absence of transcripts mapping to ORF8, and conserved expression of other SARS-CoV-2 genes. Our findings shed light on the airway epithelial response to SARS-CoV-2 infection, and demonstrate a non-essential role for ORF8 in modulating host gene expression and cytokine production from infected cells.


2004 ◽  
Vol 78 (18) ◽  
pp. 9924-9935 ◽  
Author(s):  
Robin N. Shepard ◽  
David A. Ornelles

ABSTRACT Species C human adenovirus mutants that fail to express open reading frame 3 of early region 4 (E4orf3) are phenotypically indistinguishable from the wild-type virus when evaluated in cells cultured in vitro. However, E4orf3 gene function has been productively studied in the context of additional viral mutations. This study identifies diverse roles for the E4orf3 protein that are evident in the absence of early region 1B 55-kDa protein (E1B-55K) function. In an E1B-55K-deficient background, the E4orf3 protein promotes viral replication by increasing both the burst size and the probability that an infected cell will produce virus. Early viral gene expression is not impaired in E1B-55K/E4orf3 double mutant virus-infected cells. Cells infected with the double mutant virus accumulated concatemers of viral DNA. However, the E1B-55K/E4orf3 double mutant virus did not replicate any better in MO59J cells, in which viral DNA concatemers did not accumulate, than in MO59K cells, in which viral DNA concatemers were produced, suggesting that viral DNA concatenation is not the primary growth defect of the E1B-55K/E4orf3 double mutant virus. Accumulation of viral mRNA in the nucleus and cytoplasm of E1B-55K/E4orf3 double mutant virus-infected cells was severely reduced compared to that on wild-type virus-infected cells. Thus, in an E1B-55K mutant background, the E4orf3 protein promotes the accumulation of late viral RNA and enhances late gene expression. Finally, within the context of an E1B-55K mutant virus, the E4orf3 protein acts to suppress host cell translation and preserve the viability of cells at moderately late times of infection.


Sign in / Sign up

Export Citation Format

Share Document