scholarly journals Avian Flavivirus Infection of Monocytes/Macrophages by Extensive Subversion of Host Antiviral Innate Immune Responses

2019 ◽  
Vol 93 (22) ◽  
Author(s):  
Yong Ma ◽  
Yumeng Liang ◽  
Nana Wang ◽  
Lu Cui ◽  
Zhijie Chen ◽  
...  

ABSTRACT Avian Tembusu virus (TMUV) is a newly emerging avian pathogenic flavivirus in China and Southeast Asia with features of rapid spread, an expanding host range, and cross-species transmission. The mechanisms of its infection and pathogenesis remain largely unclear. Here, we investigated the tropism of this arbovirus in peripheral blood mononuclear cells of specific-pathogen-free (SPF) ducks and SPF chickens and identified monocytes/macrophages as the key targets of TMUV infection. In vivo studies in SPF ducks and SPF chickens with monocyte/macrophage clearance demonstrated that the infection of monocytes/macrophages was crucial for viral replication, transmission, and pathogenesis. Further genome-wide transcriptome analyses of TMUV-infected chicken macrophages revealed that host antiviral innate immune barriers were the major targets of TMUV in macrophages. Despite the activation of major pattern recognition receptor signaling, the inductions of alpha interferon (IFN-α) and IFN-β were blocked by TMUV infection on transcription and translation levels, respectively. Meanwhile, TMUV inhibited host redox responses by repressing the transcription of genes encoding NADPH oxidase subunits and promoting Nrf2-mediated antioxidant responses. The recovery of either of the above-mentioned innate immune barriers was sufficient to suppress TMUV infection. Collectively, we identify an essential step of TMUV infection and reveal extensive subversion of host antiviral innate immune responses. IMPORTANCE Mosquito-borne flaviviruses include a group of pathogenic viruses that cause serious diseases in humans and animals, including dengue, West Nile, and Japanese encephalitis viruses. These flaviviruses are zoonotic and use animals, including birds, as amplifying and reservoir hosts. Avian Tembusu virus (TMUV) is an emerging mosquito-borne flavivirus that is pathogenic for many avian species and can infect cells derived from mammals and humans in vitro. Although not currently pathogenic for primates, the infection of duck industry workers and the potential risk of TMUV infection in immunocompromised individuals have been highlighted. Thus, the prevention of TMUV in flocks is important for both avian and mammalian health. Our study reveals the escape of TMUV from the first line of the host defense system in the arthropod-borne transmission route of arboviruses, possibly helping to extend our understanding of flavivirus infection in birds and refine the design of anti-TMUV therapeutics.

Parasitology ◽  
2019 ◽  
Vol 147 (4) ◽  
pp. 465-470
Author(s):  
Lisa J. Ioannidis ◽  
Emily Eriksson ◽  
Diana S. Hansen

AbstractThe CXCR3 chemokine CXCL10 or IFN-γ inducible protein 10 (IP-10) has been identified as an important biomarker of cerebral malaria (CM) mortality in children. Studies in mouse malaria infection models have shown that CXCL10 blockade alleviates brain intravascular inflammation and protects infected mice from CM. Despite the key role that CXCL10 plays in the development of CM, the leucocytic sources of CXCL10 in response to human malaria are not known. Here we investigated CXCL10 responses to Plasmodium falciparum in peripheral blood mononuclear cells (PBMCs). We found that PBMCs from malaria-unexposed donors produce CXCL10 in response to P. falciparum and that this response is IFN-γ-dependent. Moreover, CD14+ monocytes were identified as the main leucocytic sources of CXCL10 in peripheral blood, suggesting an important role for innate immune responses in the activation of this pathway involved in the development of symptomatic malaria.


2020 ◽  
Author(s):  
Shuliang Chen ◽  
Sameer Kumar ◽  
Nagaraja Tirumuru ◽  
Jennifer L. Welch ◽  
Lulu Hu ◽  
...  

AbstractN6-methyladenosine (m6A) is a prevalent RNA modification that plays a key role in regulating eukaryotic cellular mRNA functions. RNA m6A modification is regulated by two groups of cellular proteins, writers and erasers that add or remove m6A, respectively. HIV-1 RNA contains m6A modifications that modulate viral infection and gene expression in cells. However, it remains unclear whether m6A modifications of HIV-1 RNA modulate innate immune responses in cells or HIV-1-infected individuals. Here we show that m6A modification of HIV-1 RNA suppresses the expression of antiviral cytokine type-I interferon (IFN-I) in human monocytic cells. Transfection of differentiated monocytic cells with HIV-1 RNA fragments containing a single m6A-modification significantly reduced IFN-I mRNA expression relative to their unmodified RNA counterparts. We generated HIV-1 with altered RNA m6A levels by manipulating the expression of the m6A erasers or pharmacological inhibition of m6A addition in virus-producing cells. RNA transfection and viral infection of differentiated monocytic cells demonstrated that HIV-1 RNA with decreased m6A levels enhanced IFN-I expression, whereas HIV-1 RNA with increased m6A modifications had opposite effects. Our mechanistic studies revealed that m6A of HIV-1 RNA escaped the RIG-I-mediated RNA sensing and activation of the transcription factors IRF3 and IRF7 that drive IFN-I gene expression. Moreover, RNA of peripheral blood mononuclear cells from HIV-1 viremic patients showed increased m6A levels that correlated with increased IFN-I mRNA expression compared to levels from HIV-1-suppressed patients on antiretroviral therapy. Together, our results suggest that RNA m6A modifications regulate viral replication and antiviral innate immune responses in HIV-1-infected individuals.Author SummaryHIV-1 is known as a weak inducer of antiviral cytokines including IFN-I, but it is unclear how HIV-1 evades innate immunity. Different types of RNA modifications including m6A within the HIV-1 genome modulate viral replication; however, the role of m6A modifications of HIV-1 RNA in regulating innate immune responses remains elusive. In this study, we found that HIV-1 RNA modified with m6A suppresses the expression of IFN-I in differentiated monocytic cells by avoiding innate immune detection of viral RNA mediated by RIG-I, an RNA sensor in host cells. We also observed significantly increased RNA m6A modifications of peripheral blood mononuclear cells from HIV-1 viremic patients compared to virally suppressed patients on combined antiretroviral therapy, suggesting a functional link between m6A modifications and antiretroviral treatment. Investigating the functions of m6A modifications of HIV-1 RNA in regulating innate immune sensing and IFN-I induction in monocytic cells can help understand the mechanisms of HIV-1 persistence.


2020 ◽  
Author(s):  
Eteri Regis ◽  
Sara Fontanella ◽  
Lijing Lin ◽  
Rebecca Howard ◽  
Sadia Haider ◽  
...  

Males have excess morbidity and mortality from respiratory viral infections and especially so in COVID-19. The mechanisms explaining this excess in disease burden in males are unknown. Innate immune responses are likely critical in protection against a novel virus like SARS-CoV-2. We hypothesised that innate immune responses may be deficient in males relative to females. To test this we stimulated peripheral blood mononuclear cells (PBMCs) from participants in a population-based birth cohort with three respiratory viruses (rhinoviruses-RV-A16 and RV-A1, and respiratory syncytial virus-RSV) and two viral mimics (R848 and CpG-A, to mimic responses to SARS-CoV-2). We measured interferon (IFN) and IFN-induced chemokine responses and investigated sex differences in virus-induced responses. IFN-α, IFN-β and IFN-γ responses to RV-A16 were deficient in males compared to females, fold-inductions being 1.92-fold (P<0.001), 2.04-fold (P<0.001) and 1.77-fold (P=0.003) lower in males than females, respectively. Similar significant deficiencies in innate immune responses were observed in males for eleven other cytokine-stimulus pairs. Responses in males were greater than those in females in only one of 35 cytokine-stimulus pairs investigated. Review of healthcare records revealed that 12.1% of males but only 6.6% of females were admitted to hospital with respiratory infections in the first year of life (P=0.017). Impaired innate anti-viral immunity in males likely results in high morbidity and mortality from respiratory viruses including COVID-19. Males may preferentially benefit from therapies that boost innate anti-viral immune responses.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7461
Author(s):  
Claire K. Holley ◽  
Edward Cedrone ◽  
Duncan Donohue ◽  
Barry W. Neun ◽  
Daniela Verthelyi ◽  
...  

Understanding, predicting, and minimizing the immunogenicity of peptide-based therapeutics are of paramount importance for ensuring the safety and efficacy of these products. The so-called anti-drug antibodies (ADA) may have various clinical consequences, including but not limited to the alteration in the product’s distribution, biological activity, and clearance profiles. The immunogenicity of biotherapeutics can be influenced by immunostimulation triggered by the presence of innate immune response modulating impurities (IIRMIs) inadvertently introduced during the manufacturing process. Herein, we evaluate the applicability of several in vitro assays (i.e., complement activation, leukocyte proliferation, and cytokine secretion) for the screening of innate immune responses induced by ten common IIRMIs (Bacillus subtilis flagellin, FSL-1, zymosan, ODN2006, poly(I:C) HMW, poly(I:C) LMW, CLO75, MDP, ODN2216, and Escherichia coli O111:B4 LPS), and a model biotherapeutic Forteo™ (teriparatide). Our study identifies cytokine secretion from healthy human donor peripheral blood mononuclear cells (PBMC) as a sensitive method for the in vitro monitoring of innate immune responses to individual IIRMIs and teriparatide (TP). We identify signature cytokines, evaluate both broad and narrow multiplex cytokine panels, and discuss how the assay logistics influence the performance of this in vitro assay.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Reza Taherkhani ◽  
Fatemeh Farshadpour ◽  
Manoochehr Makvandi ◽  
Hamid Rajabi Memari ◽  
Ali Reza Samarbafzadeh ◽  
...  

Background.The aim of this study was to evaluatehepatitis E virus(HEV) specific cellular immune responses to truncated ORF2 protein in Iranian patients recovered from HEV infection. Information about HEV-specific immune responses could be useful in finding an effective way for development of HEV vaccine.Methods.A truncated form of HEV ORF2 protein containing amino acids 112-608 was used to stimulate peripheral blood mononuclear cells (PBMCs) separated from HEV-recovered and control groups. Finally, the levels of four cytokines, IFN-γELISPOT, and cell proliferative responses following stimulation with the truncated ORF2 protein were assessed in the both groups.Results.The truncated ORF2 protein was able to induce IFN-γELISPOT and cell proliferation responses and to produce significant amounts of IFN-γand IL-12 cytokines, but low amounts of IL-10 and IL-4 cytokinesin vitro. These responses were significantly higher in the recovered group compared to the control group. These results indicate the antigenic nature of the truncated ORF2 protein and production of T helper type 1 cytokines.Conclusion.The truncated ORF2 protein can effectively induce significant cellular immune responsesand can be introduced as a potential vaccine candidate. However, further studies are required to evaluate this proteinin vivo.


2020 ◽  
Vol 11 ◽  
Author(s):  
Imran Ahmad ◽  
Araceli Valverde ◽  
Raza Ali Naqvi ◽  
Afsar R. Naqvi

Macrophages (Mφ) are immune cells that exhibit remarkable functional plasticity. Identification of novel endogenous factors that can regulate plasticity and innate immune functions of Mφ will unravel new strategies to curb immune-related diseases. Long non-coding RNAs (lncRNAs) are a class of endogenous, non-protein coding, regulatory RNAs that are increasingly being associated with various cellular functions and diseases. Despite their ubiquity and abundance, lncRNA-mediated epigenetic regulation of Mφ polarization and innate immune functions is poorly studied. This study elucidates the regulatory role of lncRNAs in monocyte to Mφ differentiation, M1/M2 dichotomy and innate immune responses. Expression profiling of eighty-eight lncRNAs in monocytes and in vitro differentiated M2 Mφ identified seventeen differentially expressed lncRNAs. Based on fold-change and significance, we selected four differentially expressed lncRNAs viz., RN7SK, GAS5, IPW, and ZFAS1 to evaluate their functional impact. LncRNA knockdown was performed on day 3 M2 Mφ and the impact on polarization was assessed on day 7 by surface marker analysis. Knockdown of RN7SK and GAS5 showed downregulation of M2 surface markers (CD163, CD206, or Dectin) and concomitant increase in M1 markers (MHC II or CD23). RN7SK or GAS5 knockdown showed no significant impact on CD163, CD206, or CD23 transcripts. M1/M2 markers were not impacted by IPW or ZFAS1 knockdown. Functional regulation of antigen uptake/processing and phagocytosis, two central innate immune pathways, by candidate lncRNA was assessed in M1/M2 Mφ. Compared to scramble, enhanced antigen uptake and processing were observed in both M1/M2 Mφ transfected with siRNA targeting GAS5 and RN7SK but not IPW and ZFAS1. In addition, knockdown of RN7SK significantly augmented uptake of labelled E. coli in vitro by M1/M2 Mφ, while no significant difference was in GAS5 silencing cells. Together, our results highlight the instrumental role of lncRNA (RN7SK and GAS5)-mediated epigenetic regulation of macrophage differentiation, polarization, and innate immune functions.


Sign in / Sign up

Export Citation Format

Share Document