scholarly journals Formaldehyde-Inactivated Whole-Virus Vaccine Protects a Murine Model of Enterovirus 71 Encephalomyelitis against Disease

2009 ◽  
Vol 84 (1) ◽  
pp. 661-665 ◽  
Author(s):  
Kien Chai Ong ◽  
Shamala Devi ◽  
Mary Jane Cardosa ◽  
Kum Thong Wong

ABSTRACT Enterovirus 71 (EV71) causes childhood hand, foot, and mouth disease and neurological complications, and no vaccines or therapeutic drugs are currently available. Formaldehyde-inactivated whole-virus vaccines derived from EV71 clinical isolates and a mouse-adapted virus (MAV) were tested in a mouse model of EV71 encephalomyelitis. After only two immunizations, given to mice at 1 and 7 days of age, the MAV vaccine protected mice at 14 days of age from disease. Tissues from immunized mice were negative for virus by viral culture, reverse transcriptase PCR, immunohistochemistry analysis, and in situ hybridization. Cross-neutralizing EV71 antibodies to strains with genotypes B3, B4, and C1 to C5 generated in immunized adult mice were able to passively protect 14-day-old mice from disease.

Endocrinology ◽  
2012 ◽  
Vol 153 (4) ◽  
pp. 1827-1840 ◽  
Author(s):  
Matthew C. Poling ◽  
Joshua Kim ◽  
Sangeeta Dhamija ◽  
Alexander S. Kauffman

Arginine-phenylalanine-amide (RFamide)-related peptide 3 (RFRP-3, encoded by the Rfrp gene) is the mammalian ortholog of gonadotropin-inhibiting hormone and can inhibit GnRH neuronal activity and LH release. However, the development and regulation of the RFRP-3 system in both sexes is poorly understood. Using in situ hybridization, we examined changes in Rfrp-expressing neurons in mice of both sexes during development and under different adulthood hormonal milieus. We found no sex differences in Rfrp expression or cell number in adult mice. Interestingly, we identified two interspersed subpopulations of Rfrp cells (high Rfrp-expressing, HE; low Rfrp-expressing, LE), which have unique developmental and steroidal regulation characteristics. The number of LE cells robustly decreases during postnatal development, whereas HE cell number increases significantly before puberty. Using Bax knockout mice, we determined that the dramatic developmental decrease in LE Rfrp cells is not due primarily to BAX-dependent apoptosis. In adults, we found that estradiol and testosterone moderately repress Rfrp expression in both HE and LE cells, whereas the nonaromatizable androgen dihydrotestosterone has no effect. Using double-label in situ hybridization, we determined that approximately 25% of Rfrp neurons coexpress estrogen receptor-α in each sex, whereas Rfrp cells do not readily express androgen receptor in either sex, regardless of hormonal milieu. Lastly, when we looked at RFRP-3 receptors, we detected some coexpression of Gpr147 but no coexpression of Gpr74 in GnRH neurons of both intact and gonadectomized males and females. Thus, RFRP-3 may exert its effects on reproduction either directly, via Gpr147 in a subset of GnRH neurons, and/or indirectly, via upstream regulators of GnRH.


Development ◽  
1990 ◽  
Vol 110 (4) ◽  
pp. 1057-1069 ◽  
Author(s):  
K. Manova ◽  
K. Nocka ◽  
P. Besmer ◽  
R.F. Bachvarova

Recently, it has been shown that the c-kit proto-oncogene is encoded at the white spotting (W) locus in mice. Mutations of this gene cause depletion of germ cells, some hematopoietic cells and melanocytes. In order to define further the role of c-kit in gametogenesis, we have examined its expression in late fetal and postnatal ovaries and in postnatal testis. By RNA blot analysis, c-kit transcripts were not detected in late fetal ovaries but appeared at birth. The relative amount reached a maximum in ovaries of juvenile mice, and decreased in adult ovaries. c-kit transcripts were present in increasing amounts in isolated primordial, growing and full-grown oocytes, as well as in ovulated eggs. Little was detected in early 2-cell embryos and none in blastocysts. In situ hybridization revealed c-kit transcripts in a few oocytes of late fetal ovaries and in all oocytes (from primordial to full-grown) in ovaries from juvenile and adult mice. Expression was also observed in ovarian interstitial tissue from 14 days of age onward. Using indirect immunofluorescence, the c-kit protein was detected on the surface of primordial, growing and full-grown oocytes, as well as on embryos at the 1- and 2-cell stages; little remained in blastocysts. In situ hybridization analysis of testes from mice of different ages demonstrated expression in spermatogonia from 6 days of age onward. Using information provided by determining the stage of the cycle of the seminiferous epithelium for a given tubule and by following the age dependence of labeling, it was concluded that the period of expression of c-kit extends from at least as early as type A2 spermatogonia through type B spermatogonia and into preleptotene spermatocytes. Leydig cells were labelled at all ages examined. The expression pattern in oocytes correlates most strongly with oocyte growth and in male germ cells with gonial proliferation.


1990 ◽  
Vol 258 (3) ◽  
pp. C429-C435 ◽  
Author(s):  
E. Zerba ◽  
T. E. Komorowski ◽  
J. A. Faulkner

We tested the hypotheses that 1) muscles of old mice are more susceptible to injury than muscles of young and adult mice, and 2) secondary or delayed onset injury results from free radical damage. Extensor digitorum longus muscles were injured in situ by lengthening contractions. Injury was assessed by measurement of maximum isometric tetanic force (Po) expressed as a percentage of the control value and by morphological damage. Mice were treated with a free radical scavenger, polyethylene glycol-superoxide dismutase (PEG-SOD). Three days postinjury, the Po of 44% for muscles of nontreated old mice was significantly lower than the Po of 58 and 61% for those of young and adult mice. In each group, the secondary injury at 3 days was alleviated by treatment with PEG-SOD. For treated muscles of young, adult, and old mice, values for Po were 88, 80, and 70%, respectively. We conclude that muscles of old mice are more susceptible to injury than muscles of young or adult mice and that free radicals contribute to the secondary or delayed onset injury.


2020 ◽  
Vol 7 (7) ◽  
pp. 1558
Author(s):  
Ravi Sahota ◽  
Navpreet Kaur ◽  
Gurpal Singh ◽  
Nisha Upadhyay

Background: The hand-foot-mouth disease (HFMD) is an acute communicable disease, mostly affecting children under 5 years of age and caused by human enterovirus 71 (EV-A71) and coxsackievirus A16 (CV-A16). The usual incubation period is 3 to 7 days. Early symptoms are likely to be fever often followed by a sore throat followed by loss of appetite and general malaise. Aim and objectives was to study the trend of hand foot and mouth disease in a private hospital in Uttarakhand over 5 successive years.Methods: This cross-sectional study was carried among 297 cases of HFMD newborn screened at pediatrics department of Sahota Super-specialty hospital, Kashipur, Uttarakhand during year 2015 to 2019 after ethical clearance of institutional ethical committee. Diagnosis is coded with ICD-10. SPSS version 20 was used to calculate frequencies and percentiles.Results: Almost 29 cases of HMFD were picked in 2015, 32 cases in 2016, 43 cases in 2017, 81 cases in 2018, 112 in 2019. Fever observed in 86% cases. Neurological complications were observed in 9 (3%) cases, pneumonitis in 14 (4.7%) cases, cardiomyopathy observed in 3 (<1%) case. One death was reported.Conclusions: It is vital to screen patients with HFMD for these abnormal clinical presentations, allowing timely initiation of appropriate interventions to reduce the mortality. Increased awareness about vaccination in a developing nation like India and vaccination program at the grass root levels have eradicated certain lethal diseases.


2000 ◽  
Vol 350 (1) ◽  
pp. 19-29 ◽  
Author(s):  
Sabine TRAVER ◽  
Carole BIDOT ◽  
Nathalie SPASSKY ◽  
Tania BALTAUSS ◽  
Marie-France DE TAND ◽  
...  

In an attempt to elucidate the physiological function(s) of the Ras-related Rap proteins, we used the yeast two-hybrid system and isolated a cDNA encoding a protein that interacts with both Rap1 and Rap2, but not with Ras; the use of Rap2 mutants showed that this interaction is characteristic of a potential Rap effector. This protein was identified as RGS14, a member of the recently discovered family of RGS (‘regulators of G-protein signalling’) proteins that stimulate the GTPase activity of the GTP-binding α subunit of heterotrimeric G-proteins (Gα). Deletion analysis, as well as in vitro binding experiments, revealed that RGS14 binds Rap proteins through a domain distinct from that carrying the RGS identity, and that this domain shares sequence identity with the Ras/Rap binding domain of B-Raf and Raf-1 kinases. RGS14 is distinguished from other RGS proteins by its marked preference for Gαo over other Gα subunits: RGS14 binds preferentially to Gαo in isolated brain membranes, and also interacts preferentially with Gαo (as compared with Gαi1) to stimulate its GTPase activity. In adult mice, RGS14 expression is restricted to spleen and brain. In situ hybridization studies showed that it is highly expressed only in certain areas of mouse brain (such as the CA1 and CA2 regions of the hippocampus), and that this pattern closely resembles that of Rap2, but not Rap1, expression. Double in situ hybridization experiments revealed that certain cells in the hippocampus express both RGS14 and Gαo, as well as both RGS14 and Rap2, showing that the interaction of RGS14 with Gαo and Rap2 is physiologically possible. Taken together, these results suggest that RGS14 could constitute a bridging molecule that allows cross-regulation of signalling pathways downstream from G-protein-coupled receptors involving heterotrimeric proteins of the Gi/o family and those involving the Ras-related GTPase Rap2.


Author(s):  
Kuan-Chi Tseng ◽  
Bang-Yan Hsu ◽  
Pin Ling ◽  
Wen-Wen Lu ◽  
Cheng-Wen Lin ◽  
...  

Enterovirus 71 (EV71) is an etiological agent of hand foot and mouth disease and can also cause neurological complications in young children. However, there are no approved drugs to treat EV71 infections. In this study, we conducted an antiviral drug screening by using a Food and Drug Administration (FDA)-approved drug library. We identified five drugs that showed dose-dependent inhibition of viral replication. Sertraline was further characterized because it exhibited the most potent antiviral activity with the highest selectivity index among the five hits. The antiviral activity of sertraline was noted for other EV serotypes. The drug’s antiviral effect is not likely associated with its approved indications as an antidepressant and its mode-of-action as a selective serotonin reuptake inhibitor. The time-of-addition assay revealed that sertraline inhibited an EV71 infection at the entry stage. We also showed that sertraline partitioned into acidic compartments, such as endolysosomes, to neutralize the low pH levels. In agreement with the findings, the antiviral effect of sertraline could be relieved greatly by exposing virus-infected cells to extracellular low-pH culture media. Together, we have identified an FDA-approved antidepressant with the new indication for the broad-spectrum EV inhibition by blocking viral entry through the alkalization of the endolysosomal route.


2017 ◽  
Vol 91 (18) ◽  
Author(s):  
Xiaobo Lei ◽  
Zhenzhen Zhang ◽  
Xia Xiao ◽  
Jianli Qi ◽  
Bin He ◽  
...  

ABSTRACT Enterovirus 71 (EV71) can cause hand-foot-and-mouth disease (HFMD) in young children. Severe infection with EV71 can lead to neurological complications and even death. However, the molecular basis of viral pathogenesis remains poorly understood. Here, we report that EV71 induces degradation of gasdermin D (GSDMD), an essential component of pyroptosis. Remarkably, the viral protease 3C directly targets GSDMD and induces its cleavage, which is dependent on the protease activity. Further analyses show that the Q193-G194 pair within GSDMD is the cleavage site of 3C. This cleavage produces a shorter N-terminal fragment spanning amino acids 1 to 193 (GSDMD1–193). However, unlike the N-terminal fragment produced by caspase-1 cleavage, this fragment fails to trigger cell death or inhibit EV71 replication. Importantly, a T239D or F240D substitution abrogates the activity of GSDMD consisting of amino acids 1 to 275 (GSDMD1–275). This is correlated with the lack of pyroptosis or inhibition of viral replication. These results reveal a previously unrecognized strategy for EV71 to evade the antiviral response. IMPORTANCE Recently, it has been reported that GSDMD plays a critical role in regulating lipopolysaccharide and NLRP3-mediated interleukin-1β (IL-1β) secretion. In this process, the N-terminal domain of p30 released from GSDMD acts as an effector in cell pyroptosis. We show that EV71 infection downregulates GSDMD. EV71 3C cleaves GSDMD at the Q193-G194 pair, resulting in a truncated N-terminal fragment disrupted for inducing cell pyroptosis. Notably, GSDMD1–275 (p30) inhibits EV71 replication whereas GSDMD1–193 does not. These results reveal a new strategy for EV71 to evade the antiviral response.


Sign in / Sign up

Export Citation Format

Share Document