Design of the Recombinant Influenza Neuraminidase Antigen is Crucial for its Biochemical Properties and Protective Efficacy

2021 ◽  
Author(s):  
Jin Gao ◽  
Laura Klenow ◽  
Lisa Parsons ◽  
Tahir Malik ◽  
Je-Nie Phue ◽  
...  

Supplementing influenza vaccines with recombinant neuraminidase (rNA) antigens remains a promising approach for improving the suboptimal vaccine efficacy. However, correlations among rNA designs, properties, and protection have not been systematically investigated. Here, we performed a comparative analysis of several rNAs produced using the baculovirus/insect cell system. The rNAs were designed with different tetramerization motifs and NA domains from a recent H1N1 vaccine strain (A/Brisbane/02/2018) and were compared for enzymatic property, antigenicity, stability, and protection in mice. We found that distinct enzymatic properties are associated with rNAs containing the NA head-domain versus the full-ectodomain, formation of higher order rNA oligomers is tetramerization domain-dependent, whereas protective efficacy is more contingent on the combination of the tetramerization and NA domains. Following single-dose immunizations, a rNA possessing the full-ectodomain and the tetramerization motif from the human vasodilator-stimulated phosphoprotein provided much better protection than a rNA with ∼10-fold more enzymatically active molecules that is comprised of the head-domain and the same tetramerization motif. In contrast, these two rNA designs provided comparable protection when the tetramerization motif from the tetrabrachion protein was used instead. These findings demonstrate that individual rNAs should be thoroughly evaluated for vaccine development, as the heterologous domain combination can result in rNAs with similar key attributes but vastly differ in protection. IMPORTANCE For several decades it has been proposed that influenza vaccines could be supplemented with recombinant neuraminidase (rNA) to improve the efficacy. However, some key questions for manufacturing stable and immunogenic rNA remain to be answered. We show here that the tetramerization motifs and NA domains included in the rNA construct design can have a profound impact on the biochemical, immunogenic and protective properties. We also show that the single-dose immunization regimen is more informative for assessing the rNA immune response and protective efficacy, which is surprisingly more dependent on the specific combination of NA and tetramerization domains than common attributes for evaluating NA. Our findings may help to optimize the design of rNAs that can be used to improve or develop influenza vaccines.

2021 ◽  
Author(s):  
Jin Gao ◽  
Laura Klenow ◽  
Lisa M. Parsons ◽  
Tahir Malik ◽  
Jie-Nie Phue ◽  
...  

Supplementing influenza vaccines with recombinant neuraminidase (rNA) remains a promising approach for improving the suboptimal efficacy. However, correlations among rNA designs, properties, and protection have not been systematically investigated. Here, we performed a comparative analysis of several rNAs produced from different construct designs using the baculovirus/insect cell system. The rNAs were designed with different tetramerization motifs and NA domains from a recent H1N1 vaccine strain (A/Brisbane/02/2018) and were analyzed for enzymatic properties, antigenicity, thermal and size stability, and protection in mice. We found that rNAs containing the NA head-domain versus the full-ectodomain possess distinct enzymatic properties and that the molecular size stability is tetramerization domain-dependent, whereas protection is more contingent on the combination of the tetramerization and NA domains. Following single-dose immunizations, a rNA possessing the full-ectodomain, non-native enzymatic activity, and the tetramerization motif from the human vasodilator-stimulated phosphoprotein provided substantially higher protection than a rNA possessing the head-domain, native activity and the same tetramerization motif. In contrast, these two rNAs provided comparable protection when the tetramerization motif was exchanged with the one from the tetrabrachion protein. These findings demonstrate that the rNA design is crucial for the protective efficacy and should be thoroughly evaluated for vaccine development, as the unpredictable nature of the heterologous domain combination can result in rNAs with similar key attributes but vastly differ in protection.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 68
Author(s):  
Wandi Zhu ◽  
Chunhong Dong ◽  
Lai Wei ◽  
Bao-Zhong Wang

Influenza is one of the major threats to public health. Current influenza vaccines cannot provide effective protection against drifted or shifted influenza strains. Researchers have considered two important strategies to develop novel influenza vaccines with improved immunogenicity and broader protective efficacy. One is applying fewer variable viral antigens, such as the haemagglutinin stalk domain. The other is including adjuvants in vaccine formulations. Adjuvants are promising and helpful boosters to promote more rapid and stronger immune responses with a dose-sparing effect. However, few adjuvants are currently licensed for human influenza vaccines, although many potential candidates are in different trials. While many advantages have been observed using adjuvants in influenza vaccine formulations, an improved understanding of the mechanisms underlying viral infection and vaccination-induced immune responses will help to develop new adjuvant candidates. In this review, we summarize the works related to adjuvants in influenza vaccine research that have been used in our studies and other laboratories. The review will provide perspectives for the utilization of adjuvants in developing next-generation and universal influenza vaccines.


2009 ◽  
Vol 77 (7) ◽  
pp. 2795-2801 ◽  
Author(s):  
Clifford Shone ◽  
Heidi Agostini ◽  
Joanna Clancy ◽  
Mili Gu ◽  
Huei-Hsiung Yang ◽  
...  

ABSTRACT The botulinum neurotoxins (BoNTs) are a large family of extremely potent, neuroparalytic, dichain proteins which act at the peripheral nervous system. The wide genetic diversity observed with this neurotoxin family poses a significant challenge for the development of an effective botulinum vaccine. The present study describes a vaccine development platform based on protein fragments representing the N-terminal two-thirds of each toxin molecule. These fragments, designated LHN, comprise the light chain and translocation domains of each neurotoxin and are devoid of any neuron-binding activity. Using codon-optimized genes, LHN fragments derived from BoNT serotypes A and B were expressed in Escherichia coli in high yield with >1 g of purified, soluble fragment recoverable from 4.5 liter-scale fermentations. The protective efficacy of LHN/A was significantly enhanced by treatment with formaldehyde, which induced intramolecular cross-linking but virtually no aggregation of the fragment. A single immunization of the modified fragment protected mice from challenge with a 103 50% lethal dose (LD50) of BoNT/A1 with an 50% effective dose (ED50) of 50 ng of the vaccine. In similar experiments, the LHN/A vaccine was shown to protect mice against challenge with BoNT/A subtypes A1, A2, and A3, which is the first demonstration of single-dose protection by a vaccine against the principal toxin subtypes of BoNT/A. The LHN/B vaccine was also highly efficacious, giving an ED50 of ∼140 ng to a challenge of 103 LD50 of BoNT/B1. In addition, LHN/B provided single-dose protection in mice against BoNT/B4 (nonproteolytic toxin subtype).


2010 ◽  
Vol 44 (2) ◽  
pp. 16
Author(s):  
HEIDI SPLETE
Keyword(s):  

2021 ◽  
Vol 13 (583) ◽  
pp. eabe5449
Author(s):  
Nicole Darricarrère ◽  
Yu Qiu ◽  
Masaru Kanekiyo ◽  
Adrian Creanga ◽  
Rebecca A. Gillespie ◽  
...  

Seasonal influenza vaccines confer protection against specific viral strains but have restricted breadth that limits their protective efficacy. The H1 and H3 subtypes of influenza A virus cause most of the seasonal epidemics observed in humans and are the major drivers of influenza A virus–associated mortality. The consequences of pandemic spread of COVID-19 underscore the public health importance of prospective vaccine development. Here, we show that headless hemagglutinin (HA) stabilized-stem immunogens presented on ferritin nanoparticles elicit broadly neutralizing antibody (bnAb) responses to diverse H1 and H3 viruses in nonhuman primates (NHPs) when delivered with a squalene-based oil-in-water emulsion adjuvant, AF03. The neutralization potency and breadth of antibodies isolated from NHPs were comparable to human bnAbs and extended to mismatched heterosubtypic influenza viruses. Although NHPs lack the immunoglobulin germline VH1-69 residues associated with the most prevalent human stem-directed bnAbs, other gene families compensated to generate bnAbs. Isolation and structural analyses of vaccine-induced bnAbs revealed extensive interaction with the fusion peptide on the HA stem, which is essential for viral entry. Antibodies elicited by these headless HA stabilized-stem vaccines neutralized diverse H1 and H3 influenza viruses and shared a mode of recognition analogous to human bnAbs, suggesting that these vaccines have the potential to confer broadly protective immunity against diverse viruses responsible for seasonal and pandemic influenza infections in humans.


2017 ◽  
Vol 24 (11) ◽  
Author(s):  
Ahreum Kim ◽  
Yun-Gyoung Hur ◽  
Sunwha Gu ◽  
Sang-Nae Cho

ABSTRACT The aim of this study was to evaluate the protective efficacy of MTBK_24820, a complete form of PPE39 protein derived from a predominant Beijing/K strain of Mycobacterium tuberculosis in South Korea. Mice were immunized with MTKB_24820, M. bovis Bacilli Calmette-Guérin (BCG), or adjuvant prior to a high-dosed Beijing/K strain aerosol infection. After 4 and 9 weeks, bacterial loads were determined and histopathologic and immunologic features in the lungs and spleens of the M. tuberculosis-infected mice were analyzed. Putative immunogenic T-cell epitopes were examined using synthetic overlapping peptides. Successful immunization of MTBK_24820 in mice was confirmed by increased IgG responses (P < 0.05) and recalled gamma interferon (IFN-γ), interleukin-2 (IL-2), IL-6, and IL-17 responses (P < 0.05 or P < 0.01) to MTBK_24820. After challenge with the Beijing/K strain, an approximately 0.5 to 1.0 log10 reduction in CFU in lungs and fewer lung inflammation lesions were observed in MTBK_24820-immunized mice compared to those for control mice. Moreover, MTBK_24820 immunization elicited significantly higher numbers of CD4+ T cells producing protective cytokines, such as IFN-γ and IL-17, in lungs and spleens (P < 0.01) and CD4+ multifunctional T cells producing IFN-γ, tumor necrosis factor alpha (TNF-α), and/or IL-17 (P < 0.01) than in control mice, suggesting protection comparable to that of BCG against the hypervirulent Beijing/K strain. The dominant immunogenic T-cell epitopes that induced IFN-γ production were at the N terminus (amino acids 85 to 102 and 217 to 234). Its vaccine potential, along with protective immune responses in vivo, may be informative for vaccine development, particularly in regions where the M. tuberculosis Beijing/K-strain is frequently isolated from TB patients.


2021 ◽  
Vol 218 (7) ◽  
Author(s):  
Laura Solforosi ◽  
Harmjan Kuipers ◽  
Mandy Jongeneelen ◽  
Sietske K. Rosendahl Huber ◽  
Joan E.M. van der Lubbe ◽  
...  

Safe and effective coronavirus disease–19 (COVID-19) vaccines are urgently needed to control the ongoing pandemic. While single-dose vaccine regimens would provide multiple advantages, two doses may improve the magnitude and durability of immunity and protective efficacy. We assessed one- and two-dose regimens of the Ad26.COV2.S vaccine candidate in adult and aged nonhuman primates (NHPs). A two-dose Ad26.COV2.S regimen induced higher peak binding and neutralizing antibody responses compared with a single dose. In one-dose regimens, neutralizing antibody responses were stable for at least 14 wk, providing an early indication of durability. Ad26.COV2.S induced humoral immunity and T helper cell (Th cell) 1–skewed cellular responses in aged NHPs that were comparable to those in adult animals. Aged Ad26.COV2.S-vaccinated animals challenged 3 mo after dose 1 with a SARS-CoV-2 spike G614 variant showed near complete lower and substantial upper respiratory tract protection for both regimens. Neutralization of variants of concern by NHP sera was reduced for B.1.351 lineages while maintained for the B.1.1.7 lineage independent of Ad26.COV2.S vaccine regimen.


2009 ◽  
Vol 191 (17) ◽  
pp. 5387-5397 ◽  
Author(s):  
Isabella Santi ◽  
Renata Grifantini ◽  
Sheng-Mei Jiang ◽  
Cecilia Brettoni ◽  
Guido Grandi ◽  
...  

ABSTRACT To identify factors involved in the response of group B streptococci (GBS) to environmental pH, we performed a comparative global gene expression analysis of GBS at acidic and neutral pHs. We found that the transcription of 317 genes was increased at pH 5.5 relative to that at pH 7.0, while 61 genes were downregulated. The global response to acid stress included the differential expression of genes involved in transport, metabolism, stress response, and virulence. Known vaccine candidates, such as BibA and pilus components, were also regulated by pH. We observed that many of the genes involved in the GBS response to pH are known to be controlled by the CsrRS two-component system. Comparison of the regulon of wild-type strain 2603 V/R with that of a csrRS deletion mutant strain revealed that the pH-dependent regulation of 90% of the downregulated genes and 59.3% of the up-regulated genes in strain 2603 V/R was CsrRS dependent and that many virulence factors were overexpressed at high pH. Beta-hemolysin regulation was abrogated by selective inactivation of csrS, suggesting the implication of the CsrS protein in pH sensing. These results imply that the translocation of GBS from the acidic milieu of the vagina to the neutral pH of the neonatal lung signals the up-regulation of GBS virulence factors and conversion from a colonizing to an invasive phenotype. In addition, the fact that increased exposure of BibA on the bacterial surface at pH 7.0 induced opsonophagocytic killing of GBS in immune serum highlights the importance of pH regulation in the protective efficacy of specific antibodies to surface-exposed GBS proteins.


2015 ◽  
Vol 22 (6) ◽  
pp. 618-630 ◽  
Author(s):  
Wenling Wang ◽  
Renqing Li ◽  
Yao Deng ◽  
Ning Lu ◽  
Hong Chen ◽  
...  

ABSTRACTThe conventional hemagglutinin (HA)- and neuraminidase (NA)-based influenza vaccines need to be updated most years and are ineffective if the glycoprotein HA of the vaccine strains is a mismatch with that of the epidemic strain. Universal vaccines targeting conserved viral components might provide cross-protection and thus complement and improve conventional vaccines. In this study, we generated DNA plasmids and recombinant vaccinia viruses expressing the conserved proteins nucleoprotein (NP), polymerase basic 1 (PB1), and matrix 1 (M1) from influenza virus strain A/Beijing/30/95 (H3N2). BALB/c mice were immunized intramuscularly with a single vaccine based on NP, PB1, or M1 alone or a combination vaccine based on all three antigens and were then challenged with lethal doses of the heterologous influenza virus strain A/PR/8/34 (H1N1). Vaccines based on NP, PB1, and M1 provided complete or partial protection against challenge with 1.7 50% lethal dose (LD50) of PR8 in mice. Of the three antigens, NP-based vaccines induced protection against 5 LD50and 10 LD50and thus exhibited the greatest protective effect. Universal influenza vaccines based on the combination of NP, PB1, and M1 induced a strong immune response and thus might be an alternative approach to addressing future influenza virus pandemics.


2019 ◽  
Vol 189 (3) ◽  
pp. 185-192 ◽  
Author(s):  
Wey Wen Lim ◽  
Nancy H L Leung ◽  
Sheena G Sullivan ◽  
Eric J Tchetgen Tchetgen ◽  
Benjamin J Cowling

Abstract There is increasing attention to the need to identify new immune markers for the evaluation of existing and new influenza vaccines. Immune markers that could predict individual protection against infection and disease, commonly called correlates of protection (CoPs), play an important role in vaccine development and licensing. Here, we discuss the epidemiologic considerations when evaluating immune markers as potential CoPs for influenza vaccines and emphasize the distinction between correlation and causation. While an immune marker that correlates well with protection from infection can be used as a predictor of vaccine efficacy, it should be distinguished from an immune marker that plays a mechanistic role in conferring protection against a clinical endpoint—the latter might be a more reliable predictor of vaccine efficacy and a more appropriate target for rational vaccine design. To clearly distinguish mechanistic and nonmechanistic CoPs, we suggest using the term “correlates of protection” for nonmechanistic CoPs, and ‘‘mediators of protection’’ for mechanistic CoPs. Furthermore, because the interactions among and relative importance of correlates or mediators of protection can vary according to age or prior vaccine experience, the effect sizes and thresholds for protective effects for CoPs could also vary in different segments of the population.


Sign in / Sign up

Export Citation Format

Share Document