scholarly journals Human Herpesvirus 6B Downregulates Expression of Activating Ligands during Lytic Infection To Escape Elimination by Natural Killer Cells

2016 ◽  
Vol 90 (21) ◽  
pp. 9608-9617 ◽  
Author(s):  
Dominik Schmiedel ◽  
Julie Tai ◽  
Francesca Levi-Schaffer ◽  
Sarah Dovrat ◽  
Ofer Mandelboim

ABSTRACT The Herpesviridae family consists of eight viruses, most of which infect a majority of the human population. One of the less-studied members is human herpesvirus 6 (HHV-6) ( Roseolovirus ), which causes a mild, well-characterized childhood disease. Primary HHV-6 infection is followed by lifelong latency. Reactivation frequently occurs in immunocompromised patients, such as those suffering from HIV infection or cancer or following transplantation, and causes potentially life-threatening complications. In this study, we investigated the mechanisms that HHV-6 utilizes to remain undetected by natural killer (NK) cells, which are key participants in the innate immune response to infections. We revealed viral mechanisms which downregulate ligands for two powerful activating NK cell receptors: ULBP1, ULBP3, and MICB, which trigger NKG2D, and B7-H6, which activates NKp30. Accordingly, this downregulation impaired the ability of NK cells to recognize HHV-6-infected cells. Thus, we describe for the first time immune evasion mechanisms of HHV-6 that protect lytically infected cells from NK elimination. IMPORTANCE Human herpesvirus 6 (HHV-6) latently infects a large portion of the human population and can reactivate in humans lacking a functional immune system, such as cancer or AIDS patients. Under these conditions, it can cause life-threatening diseases. To date, the actions and interplay of immune cells, and particularly cells of the innate immune system, during HHV-6 infection are poorly defined. In this study, we aimed to understand how cells undergoing lytic HHV-6 infection interact with natural killer (NK) cells, innate lymphocytes constituting the first line of defense against viral intruders. We show that HHV-6 suppresses the expression of surface proteins that alert the immune cells by triggering two major receptors on NK cells, NKG2D and NKp30. As a consequence, HHV-6 can replicate undetected by the innate immune system and potentially spread infection throughout the body. This study advances the understanding of HHV-6 biology and the measures it uses to successfully escape immune elimination.

2019 ◽  
Vol 14 (1) ◽  
pp. 14-21 ◽  
Author(s):  
Mehdi Najar ◽  
Mohammad Fayyad-Kazan ◽  
Makram Merimi ◽  
Arsène Burny ◽  
Dominique Bron ◽  
...  

Mesenchymal stromal cells (MSCs), characterized by both multidifferentiation potential and potent immunomodulatory capacity, represent a promising, safe and powerful cell based-therapy for repairing tissue damage and/or treating diseases associated with aberrant immune responses. Natural killer (NK) cells are granular lymphocytes of the innate immune system that function alone or in combination with other immune cells to combat both tumors and virally infected cells. After their infusion, MSCs are guided by host inflammatory elements and can interact with different immune cells, particularly those of the innate immune system. Although some breakthroughs have been achieved in understanding these interactions, much remains to be determined. In this review, we discuss the complex interactions between NK cells and MSCs, particularly the importance of improving the therapeutic value of MSCs.


2020 ◽  
Vol 8 (2) ◽  
pp. 176 ◽  
Author(s):  
Yann Sellier ◽  
Florence Marliot ◽  
Bettina Bessières ◽  
Julien Stirnemann ◽  
Ferechte Encha-Razavi ◽  
...  

Background: The understanding of the pathogenesis of cytomegalovirus (CMV)-induced fetal brain lesions is limited. We aimed to quantify adaptive and innate immune cells and CMV-infected cells in fetal brains with various degrees of brain damage. Methods: In total, 26 archived embedded fetal brains were studied, of which 21 were CMV-infected and classified in severely affected (n = 13) and moderately affected (n = 8), and 5 were uninfected controls. The respective magnitude of infected cells, immune cells (CD8+, B cells, plasma cells, NK cells, and macrophages), and expression of immune checkpoint receptors (PD-1/PD-L1 and LAG-3) were measured by immunochemistry and quantified by quantitative imaging analysis. Results: Quantities of CD8+, plasma cells, NK cells, macrophages, and HCMV+ cells and expression of PD-1/PD-L1 and LAG-3 were significantly higher in severely affected than in moderately affected brains (all p values < 0.05). A strong link between higher number of stained cells for HCMV/CD8 and PD-1 and severity of brain lesions was found by component analysis. Conclusions: The higher expression of CD8, PD-1, and LAG-3 in severely affected brains could reflect immune exhaustion of cerebral T cells. These exhausted T cells could be ineffective in controlling viral multiplication itself, leading to more severe brain lesions. The study of the functionality of brain leucocytes ex vivo is needed to confirm this hypothesis.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Shiho Chiba ◽  
Hiroaki Ikushima ◽  
Hiroshi Ueki ◽  
Hideyuki Yanai ◽  
Yoshitaka Kimura ◽  
...  

The eradication of tumor cells requires communication to and signaling by cells of the immune system. Natural killer (NK) cells are essential tumor-killing effector cells of the innate immune system; however, little is known about whether or how other immune cells recognize tumor cells to assist NK cells. Here, we show that the innate immune receptor Dectin-1 expressed on dendritic cells and macrophages is critical to NK-mediated killing of tumor cells that express N-glycan structures at high levels. Receptor recognition of these tumor cells causes the activation of the IRF5 transcription factor and downstream gene induction for the full-blown tumoricidal activity of NK cells. Consistent with this, we show exacerbated in vivo tumor growth in mice genetically deficient in either Dectin-1 or IRF5. The critical contribution of Dectin-1 in the recognition of and signaling by tumor cells may offer new insight into the anti-tumor immune system with therapeutic implications.


Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2226
Author(s):  
Israa Shihab ◽  
Bariaa A. Khalil ◽  
Noha Mousaad Elemam ◽  
Ibrahim Y. Hachim ◽  
Mahmood Yaseen Hachim ◽  
...  

The innate immune system is the first line of defense against invading pathogens and has a major role in clearing transformed cells, besides its essential role in activating the adaptive immune system. Macrophages, dendritic cells, NK cells, and granulocytes are part of the innate immune system that accumulate in the tumor microenvironment such as breast cancer. These cells induce inflammation in situ by secreting cytokines and chemokines that promote tumor growth and progression, in addition to orchestrating the activities of other immune cells. In breast cancer microenvironment, innate immune cells are skewed towards immunosuppression that may lead to tumor evasion. However, the mechanisms by which immune cells could interact with breast cancer cells are complex and not fully understood. Therefore, the importance of the mammary tumor microenvironment in the development, growth, and progression of cancer is widely recognized. With the advances of using bioinformatics and analyzing data from gene banks, several genes involved in NK cells of breast cancer individuals have been identified. In this review, we discuss the activities of certain genes involved in the cross-talk among NK cells and breast cancer. Consequently, altering tumor immune microenvironment can make breast tumors more responsive to immunotherapy.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1424-1424
Author(s):  
François-René Bertin ◽  
Sandrine Laurance ◽  
Catherine Lemarie ◽  
Mark Blostein

Abstract Thrombosis is considered to be a pathological deviation of physiologic hemostasis involving similar mechanisms. Interestingly, recent work demonstrates that innate immune cells promote venous thrombosis. Innate immune cells were shown to collaborate to induce the activation of the coagulation cascade and platelets. In particular, neutrophils contribute to venous thrombosis through the release of neutrophil extracellular traps (NETs). However, the mechanism triggering the formation of NETs during venous thrombosis remain unknown. Of interest, a study showed that IFNγ induced the formation of NETs. Thus, we investigated the role of IFNγ-producing cells in the development of thrombosis. We used mice lacking IFNγ, Tbet (the transcription factor regulating the expression of IFNγ) or wild type mice. Venous thrombosis was induced using the flow restriction model in the inferior vena cava , as has been previously published. In Tbet-/-, IFNγ-/- and WT mice, we show that the absence of Tbet or IFNγ decreases the formation of thrombi after venous thrombosis induction, suggesting that the Tbet+/IFNγ producing cells are required for the early development of venous thrombosis. Comparing the composition of the thrombi from Tbet-/-, IFNγ-/- and WT mice, we show that, in all mice, neutrophils are the main cellular component of thrombi followed by monocytes; however, the number of neutrophil extracellular traps (NETs) formed during thrombosis is significantly lower in Tbet-/- and IFNγ-/- mice. Furthermore, NET formation is also decreased in WT mice specifically depleted of IFNγ and increases in Tbet-/- and IFNγ-/- mice injected with recombinant IFNγ. In vitro, we show that stimulation of WT murine neutrophils with recombinant IFNγ triggers the formation of NETs demonstrating that Tbet and IFNγ are crucial for NET formation by neutrophils. Natural killer (NK) cells are the main producers of IFNγ . Thus, we investigated the role of NK cells in venous thrombosis induced by flow restriction. NK cells were specifically depleted with an antibody during the development of venous thrombosis. The absence of NK cells results in smaller thrombi suggesting that NK cells are required for early thrombus development. Additionally, depletion in NK cells results in decreased in-situ IFNγ production and decreased NET formation. To directly link NK cells to the formation of NETs, WT neutrophils were co-cultured with Tbet-/- and IFNγ-/- NK cells. We show that WT neutrophils release less NETs when cultured with Tbet-/- and IFNγ-/- NK cells as compared to WT NK cells. These data suggest that NK cells trigger the formation of NETs by neutrophils through the production of IFNγ. Hence, we demonstrate that, in a partial flow restriction model of venous thrombosis, Tbet and IFNγ are crucial for thrombus development by promoting the formation of NETs by neutrophils and that NK cells are key effector cells in this process. Disclosures Blostein: boehringer-ingelheim: Research Funding.


2010 ◽  
Vol 84 (9) ◽  
pp. 4148-4157 ◽  
Author(s):  
Huawei Mao ◽  
Wenwei Tu ◽  
Yinping Liu ◽  
Gang Qin ◽  
Jian Zheng ◽  
...  

ABSTRACT Natural killer (NK) cells keep viral infections under control at the early phase by directly killing infected cells. Influenza is an acute contagious respiratory viral disease transmitted from host-to-host in the first few days of infection. The evasion of host innate immune defenses including NK cells is important for its success as a viral pathogen of humans and animals. NK cells encounter influenza virus within the microenvironment of infected cells. It therefore is important to investigate the direct effects of influenza virus on NK cell activity. Recently we demonstrated that influenza virus directly infects human NK cells and induces cell apoptosis to counter their function (H. Mao, W. Tu, G. Qin, H. K. W. Law, S. F. Sia, P.-L. Chan, Y. Liu, K.-T. Lam, J. Zheng, M. Peiris, and Y.-L. Lau, J. Virol. 83:9215-9222, 2009). Here, we further demonstrated that both the intact influenza virion and free hemagglutinin protein inhibited the cytotoxicity of fresh and interleukin-2 (IL-2)-activated primary human NK cells. Hemagglutinin bound and internalized into NK cells via the sialic acids. This interaction did not decrease NKp46 expression but caused the downregulation of the ζ chain through the lysosomal pathway, which caused the decrease of NK cell cytotoxicity mediated by NKp46 and NKp30. The underlying dysregulation of the signaling pathway involved ζ chain downregulation, leading to decreased Syk and ERK activation and granule exocytosis upon target cell stimulation, finally causing reduced cytotoxicity. These findings suggest that influenza virus developed a novel strategy to evade NK cell innate immune defense that is likely to facilitate viral transmission and also contribute to virus pathogenesis.


2015 ◽  
Vol 43 (1) ◽  
Author(s):  
Yen-Chang Lee ◽  
Syh-Jae Lin

AbstractNatural killer (NK) cells that provide first-line innate immune reactions against virus-infected and tumor cells have different roles in different body sites and in different stages. From the beginning of life, NK cells participate in many aspects of development, especially in a successful pregnancy and a healthy neonatal stage. This article reviews recent advances regarding the role of NK cells in implantation, placentation and immune tolerance during pregnancy as well as in the neonatal immune defense. The interactions between NK cells and other immune cells in each developmental stage are discussed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Abigael Eva Chaouat ◽  
Barbara Seliger ◽  
Ofer Mandelboim ◽  
Dominik Schmiedel

The coevolution of the human immune system and herpesviruses led to the emergence and diversification of both cellular danger molecules recognized by immune cells on the one hand and viral countermeasures that prevent the expression of these proteins on infected cells on the other. There are eight ligands for the activating receptor NKG2D in humans – MICA, MICB, ULBP1-6. Several of them are induced and surface-expressed on herpesvirus-infected cells to serve as danger signals to activate the immune system. Therefore, these ligands are frequently targeted for suppression by viral immune evasion mechanisms. Mechanisms to downregulate NKG2D ligands and thereby escape immune recognition have been identified in all other human herpesviruses (HHV), except for HHV-6A. In this study, we identify two HHV-6A encoded immunoevasins, U20 and U21, which suppress the expression of the NKG2D ligands ULBP1 and ULBP3, respectively, during infection. Additionally, MICB is targeted by a so far unexplored viral protein. Due to the diminished NKG2D ligand surface expression on infected cells, recognition of HHV-6A infected cells by innate immune cells is impaired. Importantly, our study indicates that immune escape mechanisms between the related herpesviruses HHV-6A and HHV-6B are evolutionary conserved as the same NKG2D ligands are targeted. Our data contribute an additional piece of evidence for the importance of the NKG2D receptor – NKG2D ligand axis during human herpesvirus infections and sheds light on immune evasion mechanisms of HHV-6A.


2020 ◽  
Vol 3 (9) ◽  
pp. 64-86
Author(s):  
SERGIO ROBERTO AGUILAR-RUIZ ◽  
FRANCISCO JAVIER SÁNCHEZ-PEÑA

The immune response against SARS-CoV-2 is similar to that against other viruses, where the innate immune system acts at early stages through the secretion of type 1 interferon (type 1 IFN), which prevents viral replication and the activation of natural killer (NK) cells. Later, the adaptive immune system acts through CD8+ cytotoxic T-lymphocytes and antibody production, which aim to destroy infected cells and block viral entry into cells. All the above leads to the elimination of the virus and mild symptomatology. However, in individuals with a weakened immune system, the viral infection spreads and leads to a potent inflammatory response, which leads to the recruitment of immune cells to the lungs, where they can cause severe pulmonary and even systemic pathology.


2015 ◽  
Vol 90 (1) ◽  
pp. 129-141 ◽  
Author(s):  
Georges Abboud ◽  
Vikas Tahiliani ◽  
Pritesh Desai ◽  
Kyle Varkoly ◽  
John Driver ◽  
...  

ABSTRACTIn establishing a respiratory infection, vaccinia virus (VACV) initially replicates in airway epithelial cells before spreading to secondary sites of infection, mainly the draining lymph nodes, spleen, gastrointestinal tract, and reproductive organs. We recently reported that interferon gamma (IFN-γ) produced by CD8 T cells ultimately controls this disseminated infection, but the relative contribution of IFN-γ early in infection is unknown. Investigating the role of innate immune cells, we found that the frequency of natural killer (NK) cells in the lung increased dramatically between days 1 and 4 postinfection with VACV. Lung NK cells displayed an activated cell surface phenotype and were the primary source of IFN-γ prior to the arrival of CD8 T cells. In the presence of an intact CD8 T cell compartment, depletion of NK cells resulted in increased lung viral load at the time of peak disease severity but had no effect on eventual viral clearance, disease symptoms, or survival. In sharp contrast, RAG−/−mice devoid of T cells failed to control VACV and succumbed to infection despite a marked increase in NK cells in the lung. Supporting an innate immune role for NK cell-derived IFN-γ, we found that NK cell-depleted or IFN-γ-depleted RAG−/−mice displayed increased lung VACV titers and dissemination to ovaries and a significantly shorter mean time to death compared to untreated NK cell-competent RAG−/−controls. Together, these findings demonstrate a role for IFN-γ in aspects of both the innate and adaptive immune response to VACV and highlight the importance of NK cells in T cell-independent control of VACV in the respiratory tract.IMPORTANCEHerein, we provide the first systematic evaluation of natural killer (NK) cell function in the lung after infection with vaccinia virus, a member of thePoxviridaefamily. The respiratory tract is an important mucosal site for entry of many human pathogens, including poxviruses, but precisely how our immune system defends the lung against these invaders remains unclear. Natural killer cells are a type of cytotoxic lymphocyte and part of our innate immune system. In recent years, NK cells have received increasing levels of attention following the discovery that different tissues contain specific subsets of NK cells with distinctive phenotypes and function. They are abundant in the lung, but their role in defense against respiratory viruses is poorly understood. What this study demonstrates is that NK cells are recruited, activated, and contribute to protection of the lung during a severe respiratory infection with vaccinia virus.


Sign in / Sign up

Export Citation Format

Share Document