scholarly journals Neglected but Important Role of Apolipoprotein E Exchange in Hepatitis C Virus Infection

2016 ◽  
Vol 90 (21) ◽  
pp. 9632-9643 ◽  
Author(s):  
Zaili Yang ◽  
Xiaoning Wang ◽  
Xiumei Chi ◽  
Fanfan Zhao ◽  
Jinxu Guo ◽  
...  

ABSTRACT Hepatitis C virus (HCV) is a major cause of chronic liver disease, infecting approximately 170 million people worldwide. HCV assembly is tightly associated with the lipoprotein pathway. Exchangeable apolipoprotein E (apoE) is incorporated on infectious HCV virions and is important for infectious HCV virion morphogenesis and entry. Moreover, the virion apoE level is positively correlated with its ability to escape E2 antibody neutralization. However, the role of apoE exchange in the HCV life cycle is unclear. In this study, the relationship between apoE expression and cell permissiveness to HCV infection was assessed by infecting apoE knockdown and derived apoE rescue cell lines with HCV. Exchange of apoE between lipoproteins and HCV lipoviral particles (LVPs) was evaluated by immunoprecipitation, infectivity testing, and viral genome quantification. Cell and heparin column binding assays were applied to determine the attachment efficiency of LVPs with different levels of incorporated apoE. The results showed that cell permissiveness for HCV infection was determined by exogenous apoE-associated lipoproteins. Furthermore, apoE exchange did occur between HCV LVPs and lipoproteins, which was important to maintain a high apoE level on LVPs. Lipid-free apoE was capable of enhancing HCV infectivity for apoE knockdown cells but not apoE rescue cells. A higher apoE level on LVPs conferred more efficient LVP attachment to both the cell surface and heparin beads. This study revealed that exogenous apoE-incorporating lipoproteins from uninfected hepatocytes safeguarded the apoE level of LVPs for more efficient attachment during HCV infection. IMPORTANCE In this study, a neglected but important role of apoE exchange in HCV LVP infectivity after virus assembly and release was identified. The data indicated that apoE expression level in uninfected cells is important for high permissiveness to HCV infection. Secreted apoE-associated lipoprotein specifically enhances infection of HCV LVPs. apoE exchange between HCV LVP and lipoproteins is important to maintain an adequate apoE level on LVPs for their efficient attachment to cell surface. These data defined for the first time an extracellular role of exchangeable apoE in HCV infection and suggested that exchangeable apolipoproteins reach a natural equilibrium between HCV LVPs and lipoprotein particles, which provides a new perspective to the understanding of the heterogeneity of HCV LVPs in composition.

2015 ◽  
Vol 89 (7) ◽  
pp. 3846-3858 ◽  
Author(s):  
Yan Xu ◽  
Pierre Martinez ◽  
Karin Séron ◽  
Guangxiang Luo ◽  
Fabrice Allain ◽  
...  

ABSTRACTHepatitis C virus (HCV) entry involves binding to cell surface heparan sulfate (HS) structures. However, due to the lipoprotein-like structure of HCV, the exact contribution of virion components to this interaction remains controversial. Here, we investigated the relative contribution of HCV envelope proteins and apolipoprotein E in the HS-binding step. Deletion of hypervariable region 1, a region previously proposed to be involved in HS binding, did not alter HCV virion binding to HS, indicating that this region is not involved in this interaction in the context of a viral infection. Patient sera and monoclonal antibodies recognizing different regions of HCV envelope glycoproteins were also used in a pulldown assay with beads coated with heparin, a close HS structural homologue. Although isolated HCV envelope glycoproteins could interact with heparin, none of these antibodies was able to interfere with the virion-heparin interaction, strongly suggesting that at the virion surface, HCV envelope glycoproteins are not accessible for HS binding. In contrast, results from kinetic studies, heparin pulldown experiments, and inhibition experiments with anti-apolipoprotein E antibodies indicated that this apolipoprotein plays a major role in HCV-HS interaction. Finally, characterization of the HS structural determinants required for HCV infection by silencing of the enzymes involved in the HS biosynthesis pathway and by competition with modified heparin indicated thatN- and 6-O-sulfation but not 2-O-sulfation is required for HCV infection and that the minimum HS oligosaccharide length required for HCV infection is a decasaccharide. Together, these data indicate that HCV hijacks apolipoprotein E to initiate its interaction with specific HS structures.IMPORTANCEHepatitis C is a global health problem. Hepatitis C virus (HCV) infects approximately 130 million individuals worldwide, with the majority of cases remaining undiagnosed and untreated. In most infected individuals, the virus evades the immune system and establishes a chronic infection. As a consequence, hepatitis C is the leading cause of cirrhosis, end-stage liver disease, hepatocellular carcinoma, and liver transplantation. Virus infection is initiated by entry of the virus into the host cell. In this study, we provide new insights into the viral and cellular determinants involved in the first step of HCV entry, the binding of the virus to host cells. We show that apolipoprotein E is likely responsible for virus binding to heparan sulfate and thatN- and 6-O-sulfation of the heparan sulfate proteoglycans is required for HCV infection. In addition, the minimal HS length unit required for HCV infection is a decasaccharide.


2016 ◽  
Vol 113 (27) ◽  
pp. 7620-7625 ◽  
Author(s):  
Qisheng Li ◽  
Catherine Sodroski ◽  
Brianna Lowey ◽  
Cameron J. Schweitzer ◽  
Helen Cha ◽  
...  

Hepatitis C virus (HCV) enters the host cell through interactions with a cascade of cellular factors. Although significant progress has been made in understanding HCV entry, the precise mechanisms by which HCV exploits the receptor complex and host machinery to enter the cell remain unclear. This intricate process of viral entry likely depends on additional yet-to-be-defined cellular molecules. Recently, by applying integrative functional genomics approaches, we identified and interrogated distinct sets of host dependencies in the complete HCV life cycle. Viral entry assays using HCV pseudoparticles (HCVpps) of various genotypes uncovered multiple previously unappreciated host factors, including E-cadherin, that mediate HCV entry. E-cadherin silencing significantly inhibited HCV infection in Huh7.5.1 cells, HepG2/miR122/CD81 cells, and primary human hepatocytes at a postbinding entry step. Knockdown of E-cadherin, however, had no effect on HCV RNA replication or internal ribosomal entry site (IRES)-mediated translation. In addition, an E-cadherin monoclonal antibody effectively blocked HCV entry and infection in hepatocytes. Mechanistic studies demonstrated that E-cadherin is closely associated with claudin-1 (CLDN1) and occludin (OCLN) on the cell membrane. Depletion of E-cadherin drastically diminished the cell-surface distribution of these two tight junction proteins in various hepatic cell lines, indicating that E-cadherin plays an important regulatory role in CLDN1/OCLN localization on the cell surface. Furthermore, loss of E-cadherin expression in hepatocytes is associated with HCV-induced epithelial-to-mesenchymal transition (EMT), providing an important link between HCV infection and liver cancer. Our data indicate that a dynamic interplay among E-cadherin, tight junctions, and EMT exists and mediates an important function in HCV entry.


2012 ◽  
Vol 86 (13) ◽  
pp. 7256-7267 ◽  
Author(s):  
J. Jiang ◽  
W. Cun ◽  
X. Wu ◽  
Q. Shi ◽  
H. Tang ◽  
...  

2006 ◽  
Vol 81 (2) ◽  
pp. 588-598 ◽  
Author(s):  
George Koutsoudakis ◽  
Eva Herrmann ◽  
Stephanie Kallis ◽  
Ralf Bartenschlager ◽  
Thomas Pietschmann

ABSTRACT Recently a cell culture model supporting the complete life cycle of the hepatitis C virus (HCV) was developed. Searching for host cell determinants involved in the HCV replication cycle, we evaluated the efficiency of virus propagation in different Huh-7-derived cell clones. We found that Huh-7.5 cells and Huh7-Lunet cells, two former replicon cell clones that had been generated by removal of an HCV replicon by inhibitor treatment, supported comparable levels of RNA replication and particle production, whereas virus spread was severely impaired in the latter cells. Analysis of cell surface expression of CD81 and scavenger receptor class B type I (SR-BI), two molecules previously implicated in HCV entry, revealed similar expression levels for SR-BI, while CD81 surface expression was much higher on Huh-7.5 cells than on Huh7-Lunet cells. Ectopic expression of CD81 in Huh7-Lunet cells conferred permissiveness for HCV infection to a level comparable to that for Huh-7.5 cells. Modulation of CD81 cell surface density in Huh-7.5 cells by RNA interference indicated that a certain amount of this molecule (∼7 × 104 molecules per cell) is required for productive infection with a low dose of HCV. Consistent with this, we show that susceptibility to HCV infection depends on a critical quantity of CD81 molecules. While infection is restricted in cells expressing very small amounts of CD81, susceptibility rapidly rises within a narrow range of CD81 levels, reaching a plateau where higher expression does not further increase the efficiency of infection. Together these data indicate that a high density of cell surface-exposed CD81 is a key determinant for productive HCV entry into host cells.


2017 ◽  
Vol 91 (18) ◽  
Author(s):  
Romy Weller ◽  
Kathrin Hueging ◽  
Richard J. P. Brown ◽  
Daniel Todt ◽  
Sebastian Joecks ◽  
...  

ABSTRACT Hepatitis C virus (HCV) is extraordinarily diverse and uses entry factors in a strain-specific manner. Virus particles associate with lipoproteins, and apolipoprotein E (ApoE) is critical for HCV assembly and infectivity. However, whether ApoE dependency is common to all HCV genotypes remains unknown. Therefore, we compared the roles of ApoE utilizing 10 virus strains from genotypes 1 through 7. ApoA and ApoC also support HCV assembly, so they may contribute to virus production in a strain-dependent fashion. Transcriptome sequencing (RNA-seq) revealed abundant coexpression of ApoE, ApoB, ApoA1, ApoA2, ApoC1, ApoC2, and ApoC3 in primary hepatocytes and in Huh-7.5 cells. Virus production was examined in Huh-7.5 cells with and without ApoE expression and in 293T cells where individual apolipoproteins (ApoE1, -E2, -E3, -A1, -A2, -C1, and -C3) were provided in trans. All strains were strictly ApoE dependent. However, ApoE involvement in virus production was strain and cell type specific, because some HCV strains poorly produced infectious virus in ApoE-expressing 293T cells and because ApoE knockout differentially affected virus production of HCV strains in Huh-7.5 cells. ApoE allelic isoforms (ApoE2, -E3, and -E4) complemented virus production of HCV strains to comparable degrees. All tested strains assembled infectious progeny with ApoE in preference to other exchangeable apolipoproteins (ApoA1, -A2, -C1, and -C3). The specific infectivity of HCV particles was similar for 293T- and Huh-7.5-derived particles for most strains; however, it differed by more than 100-fold in some viruses. Collectively, this study reveals strain-dependent and host cell-dependent use of ApoE during HCV assembly. These differences relate to the efficacy of virus production and also to the properties of released virus particles and therefore govern viral fitness at the level of assembly and cell entry. IMPORTANCE Chronic HCV infections are a major cause of liver disease. HCV is highly variable, and strain-specific determinants modulate the response to antiviral therapy, the natural course of infection, and cell entry factor usage. Here we explored whether host factor dependency of HCV in particle assembly is modulated by strain-dependent viral properties. We showed that all examined HCV strains, which represent all seven known genotypes, rely on ApoE expression for assembly of infectious progeny. However, the degree of ApoE dependence is modulated in a strain-specific and cell type-dependent manner. This indicates that HCV strains differ in their assembly properties and host factor usage during assembly of infectious progeny. Importantly, these differences relate not only to the efficiency of virus production and release but also to the infectiousness of virus particles. Thus, strain-dependent features of HCV modulate ApoE usage, with implications for virus fitness at the level of assembly and cell entry.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4668-4668
Author(s):  
Janet G. Grudeva

Backgroud: An increasing number of bacterial and viral infections have been linked with specific subtypes of lymphoma. Preliminary evidence suggests that hepatitis C virus (HCV) might play a pathogenetic role in autoimmune-related, non-malignant B-cell lymphoproliferation, as well as a subset of B-cell non-Hodgkin, s lymphomas (B-NHL), often with extranodal localization. Design and methods: The study was conducted in the Department of Hematology and consisted 149 (86 male, 63 female) untreated patients with a new diagnosis of B-NHL for 5-years period (2000–2004). HCV infection was investigated by testing for HCV antibodies in serum samples. The controls were 587 patients (without intravenous drug users) in other departments of the same hospital. Results: HCV infection was documented in 13 cases (8,4%) with NHL. The infected patients were not clinically relevant cryoglobulinemic activity, increased rate of autoimmune disorders and extranodal localizations prevalence. There was statistically significant difference between the NHL and control group (p<0,01) and no statistically significant difference between man/women carriers (p>0,05) into the NHL group. Overall, the clinical outcome of HCV-positive NHL does not seem to be different from that of NHL patients without HCV infection. However, the evidence of a significant liver injury may predict a worse prognosis in these cases. Conclusions: Our date suggest that HCV infection may be associated with B-NHL. With regard to the mechanism(s) by which HCV might favor B-cell expansion and malignant transformation, most date support an indirect pathogenetic role of the virus as an exogenous trigger. A direct oncogenetic role of HCV by direct cell infection and deregulation has only been hypothesized on the basis of the lymphotropism of the virus.


2009 ◽  
Vol 83 (16) ◽  
pp. 8012-8020 ◽  
Author(s):  
Ignacio Benedicto ◽  
Francisca Molina-Jiménez ◽  
Birke Bartosch ◽  
François-Loïc Cosset ◽  
Dimitri Lavillette ◽  
...  

ABSTRACT The precise mechanisms regulating hepatitis C virus (HCV) entry into hepatic cells remain unknown. However, several cell surface proteins have been identified as entry factors for this virus. Of these molecules, claudin-1, a tight junction (TJ) component, is considered a coreceptor required for HCV entry. Recently, we have demonstrated that HCV envelope glycoproteins (HCVgp) promote structural and functional TJ alterations. Additionally, we have shown that the intracellular interaction between viral E2 glycoprotein and occludin, another TJ-associated protein, could be the cause of the mislocalization of TJ proteins. Herein we demonstrated, by using cell culture-derived HCV particles (HCVcc), that interference of occludin expression markedly reduced HCV infection. Furthermore, our results with HCV pseudotyped particles indicated that occludin, but not other TJ-associated proteins, such as junctional adhesion molecule A or zonula occludens protein 1, was required for HCV entry. Using HCVcc, we demonstrated that occludin did not play an essential role in the initial attachment of HCV to target cells. Surface protein labeling experiments showed that both expression levels and cell surface localization of HCV (co)receptors CD81, scavenger receptor class B type I, and claudin-1 were not affected upon occludin knockdown. In addition, immunofluorescence confocal analysis showed that occludin interference did not affect subcellular distribution of the HCV (co)receptors analyzed. However, HCVgp fusion-associated events were altered after occludin silencing. In summary, we propose that occludin plays an essential role in HCV infection and probably affects late entry events. This observation may provide new insights into HCV infection and related pathogenesis.


2010 ◽  
Vol 102 (1) ◽  
pp. 63-74 ◽  
Author(s):  
Costin‐Ioan Popescu ◽  
Jean Dubuisson

2005 ◽  
Vol 23 (3) ◽  
pp. 468-473 ◽  
Author(s):  
Daniele Vallisa ◽  
Patrizia Bernuzzi ◽  
Luca Arcaini ◽  
Stefano Sacchi ◽  
Vittorio Callea ◽  
...  

Purpose Hepatitis C virus (HCV) is endemic in some areas of Northwestern Europe and the United States. HCV has been shown to play a role in the development of both hepatocellular carcinoma and B-cell non-Hodgkin's lymphoma (B-NHL). The biologic mechanisms underlying the lymphomagenic activity of the virus so far are under investigation. In this study, the role of antiviral (anti-HCV) treatment in B-NHL associated with HCV infection is evaluated. Patients and Methods Thirteen patients with histologically proven low-grade B-NHL characterized by an indolent course (ie, doubling time no less than 1 year, no bulky disease) and carrying HCV infection were enrolled on the study. All patients underwent antiviral treatment alone with pegilated interferon and ribavirin. Response assessment took place at 6 and 12 months. Results Of the twelve assessable patients, seven (58%) achieved complete response and two (16%) partial hematologic response at 14.1 ± 9.7 months (range, 2 to 24 months, median follow-up, 14 months), while two had stable disease with only one patient experiencing progression of disease. Hematologic responses (complete and partial, 75%) were highly significantly associated to clearance or decrease in serum HCV viral load following treatment (P = .005). Virologic response was more likely to be seen in HCV genotype 2 (P = .035), while hematologic response did not correlate with the viral genotype. Treatment-related toxicity did not cause discontinuation of therapy in all but two patients, one of whom, however, achieved complete response. Conclusion This experience strongly provides a role for antiviral treatment in patients affected by HCV-related, low-grade, B-cell NHL.


2012 ◽  
Vol 93 (1) ◽  
pp. 1-19 ◽  
Author(s):  
Victoria C. Edwards ◽  
Alexander W. Tarr ◽  
Richard A. Urbanowicz ◽  
Jonathan K. Ball

Hepatitis C virus (HCV) is a blood-borne virus estimated to infect around 170 million people worldwide and is, therefore, a major disease burden. In some individuals the virus is spontaneously cleared during the acute phase of infection, whilst in others a persistent infection ensues. Of those persistently infected, severe liver diseases such as cirrhosis and primary liver cancer may develop, although many individuals remain asymptomatic. A range of factors shape the course of HCV infection, not least host genetic polymorphisms and host immunity. A number of studies have shown that neutralizing antibodies (nAb) arise during HCV infection, but that these antibodies differ in their breadth and mechanism of neutralization. Recent studies, using both mAbs and polyclonal sera, have provided an insight into neutralizing determinants and the likely protective role of antibodies during infection. This understanding has helped to shape our knowledge of the overall structure of the HCV envelope glycoproteins – the natural target for nAb. Most nAb identified to date target receptor-binding sites within the envelope glycoprotein E2. However, there is some evidence that other viral epitopes may be targets for antibody neutralization, suggesting the need to broaden the search for neutralization epitopes beyond E2. This review provides a comprehensive overview of our current understanding of the role played by nAb in HCV infection and disease outcome and explores the limitations in the study systems currently used. In addition, we briefly discuss the potential therapeutic benefits of nAb and efforts to develop nAb-based therapies.


Sign in / Sign up

Export Citation Format

Share Document