scholarly journals Extensive Genetic Diversity of Polyomaviruses in Sympatric Bat Communities: Host Switching versus Coevolution

2020 ◽  
Vol 94 (9) ◽  
Author(s):  
Zhizhou Tan ◽  
Gabriel Gonzalez ◽  
Jinliang Sheng ◽  
Jianmin Wu ◽  
Fuqiang Zhang ◽  
...  

ABSTRACT Polyomaviruses (PyVs) are small DNA viruses carried by diverse vertebrates. The evolutionary relationships of viruses and hosts remain largely unclear due to very limited surveillance in sympatric communities. In order to investigate whether PyVs can transmit among different mammalian species and to identify host-switching events in the field, we conducted a systematic study of a large collection of bats (n = 1,083) from 29 sympatric communities across China which contained multiple species with frequent contact. PyVs were detected in 21 bat communities, with 192 PyVs identified in 186 bats from 15 species within 6 families representing at least 28 newly described PyVs. Surveillance results and phylogenetic analyses surprisingly revealed three interfamily PyV host-switching events in these sympatric bat communities: two distinct PyVs were identified in two bat species in restricted geographical locations, while another PyV clustered phylogenetically with PyVs carried by bats from a different host family. Virus-host relationships of all discovered PyVs were also evaluated, and no additional host-switching events were found. PyVs were identified in different horseshoe bat species in sympatric communities without observation of host-switching events, showed high genomic identities, and clustered with each other. This suggested that even for PyVs with high genomic identities in closely related host species, the potential for host switching is low. In summary, our findings revealed that PyV host switching in sympatric bat communities can occur but is limited and that host switching of bat-borne PyVs is relatively rare on the predominantly evolutionary background of codivergence with their hosts. IMPORTANCE Since the discovery of murine polyomavirus in the 1950s, polyomaviruses (PyVs) have been considered highly host restricted in mammals. Sympatric bat communities commonly contain several different bat species in an ecological niche facilitating viral transmission, and they therefore represent a model to identify host-switching events of PyVs. In this study, we screened PyVs in a large number of bats in sympatric communities from diverse habitats across China. We provide evidence that cross-species bat-borne PyV transmission exists, though is limited, and that host-switching events appear relatively rare during the evolutionary history of these viruses. PyVs with close genomic identities were also identified in different bat species without host-switching events. Based on these findings, we propose an evolutionary scheme for bat-borne PyVs in which limited host-switching events occur on the background of codivergence and lineage duplication, generating the viral genetic diversity in bats.

2019 ◽  
Author(s):  
Zhizhou Tan ◽  
Gabriel Gonzalez ◽  
Jinliang Sheng ◽  
Jianmin Wu ◽  
Fuqiang Zhang ◽  
...  

AbstractPolyomaviruses (PyVs) are small, double-stranded DNA tumor viruses carried by diverse vertebrates. PyVs have previously been considered highly host restricted in mammalian hosts, with host-switching events thought rare or nonexistent. Prior investigations have revealed short-range host-switching events of PyVs in two different African bat species within the horseshoe bat genusRhinolophus. Herein, we have conducted a systematic investigation of PyVs in 1,083 archived bat samples collected from five provinces across China, and identified 192 PyVs from 186 bats from 15 host species within 6 families (Rhinolophidae, Vespertilionidae, Hipposideridae, Emballonuridae, Miniopteridae and Pteropodidae) representing 28 newly-described PyVs, indicative of extensive genetic diversity of bat PyVs. Surprisingly, two PyVs were identified in multiple bat species from different families, and another PyV clustered phylogenetically with PyVs carried by bats from a different host family, indicative of three inter-family PyV host-switching events. The time to most recent common ancestor (tMRCA) of the three events was estimated at 0.02-11.6 million years ago (MYA), which is inconsistent with the estimated tMRCA of their respective bat hosts (36.3-66.7 MYA), and is most parsimoniously explained by host-switching events. PyVs identified from geographically separated Chinese horseshoe bat species in the present study showed close genetic identities, and clustered with each other and with PyVs from African horseshoe bats, allowing assessment of the effects of positive selection in VP1 within the horseshoe bat family Rhinolophidae. Correlation analysis indicated that co-evolution with their hosts contributed much more to evolutionary divergence of PyV than geographic distance. In conclusion, our findings provide the first evidence of inter-family host-switching events of PyV in mammals and challenge the prevailing evolutionary paradigm for strict host restriction of mammalian PyVs.Author summarySince the discovery of murine polyomavirus in the 1950s, polyomaviruses (PyVs) have been considered both genetically stable and highly host-restricted in their mammalian hosts. In this study, we have identified multiple cases of host-switching events of PyVs by large scale surveillance in diverse bat species collected in China. These host-switching events occurred between bat families living in the same colony, indicating that a large population with frequent contacts between different bat species may represent an ecological niche facilitating PyV host-switching. The cases studied involved members of bats from several families, including horseshoe bats, which were previously found to harbor a number of highly virulent viruses to both humans and domestic animals. Our findings have provided evidence that even highly host-specific DNA viruses can transmit between bats of different species and indicate an increased propensity for spillover events involving horseshoe bats. We propose an evolutionary scheme for bat-borne PyVs in which intra-host divergence and host-switching has generated the diverse PyVs in present day bats. This scheme provides a useful model to study the evolution of PyVs in other hosts and, potentially, the modeling of bat zoonoses and the transmission of other DNA viruses in other mammals, including humans.


2021 ◽  
Author(s):  
Tamar E Carter ◽  
Solomon Yared ◽  
Dejene Getachew ◽  
Joseph Spear ◽  
Sae Hee Choi ◽  
...  

The recent detection of the South Asian malaria vector Anopheles stephensi in the Horn of Africa (HOA) raises concerns about the impact of this mosquito on malaria transmission in the region. The mode and history of introduction is important for predicting the likelihood of continued introduction and future spread. Analysis of An. stephensi genetic diversity and population structure can provide insight into the history of the mosquito in the HOA. We investigated genetic diversity of An. stephensi in eastern Ethiopia where detection suggests a range expansion to this region to understand the history of this invasive population. We sequenced the cytochrome oxidase subunit I (COI) and cytochrome B gene (CytB) in 187 An. stephensi collected from 10 sites in Ethiopia in 2018. Phylogenetic analyses using a maximum-likelihood approach and minimum spanning network were conducted for Ethiopian sequences. Molecular identification of bloodmeal sources was also performed using universal vertebrate CytB sequencing. Six COI-CytB haplotypes were observed based on five segregating sites, with the highest number of haplotypes in the northeastern sites (Semera, Bati, and Gewana towns) relative to the southeastern sites (Kebridehar, Godey, and Degehabur) in eastern Ethiopia. In the phylogenetic and network analysis, we observed population differentiation based on the distribution of the haplotypes across the northeastern and central sites (Erer Gota, Dire Dawa, and Awash Sebat Kilo) compared to the southeastern sites and evidence of a South Asian origin of the HOA An. stephensi lineages. The presence of the putative South Asian haplotype of origin at sites closest to Ethiopia's northeastern borders support route of introductions into Ethiopia from the northeast. Finally, molecular bloodmeal analysis revealed evidence of feeding on bovines, goats, dogs, and humans, as well as evidence of multiple (mixed) blood meals. In conclusion, we find support for the hypothesis for the recent expansion of An. stephensi into southeastern Ethiopia with multiple introductions. We also find evidence that supports the hypothesis that HOA An. stephensi populations originate from South Asia rather than the Arabian Peninsula. The evidence of both zoophagic and anthropophagic feeding support the potential for livestock movement to play a role in vector spread in this region.


2013 ◽  
Vol 94 (4) ◽  
pp. 738-748 ◽  
Author(s):  
Ying Tao ◽  
Mang Shi ◽  
Christina Conrardy ◽  
Ivan V. Kuzmin ◽  
Sergio Recuenco ◽  
...  

Polyomaviruses (PyVs) have been identified in a wide range of avian and mammalian species. However, little is known about their occurrence, genetic diversity and evolutionary history in bats, even though bats are important reservoirs for many emerging viral pathogens. This study screened 380 specimens from 35 bat species from Kenya and Guatemala for the presence of PyVs by semi-nested pan-PyV PCR assays. PyV DNA was detected in 24 of the 380 bat specimens. Phylogenetic analysis revealed that the bat PyV sequences formed 12 distinct lineages. Full-genome sequences were obtained for seven representative lineages and possessed similar genomic features to known PyVs. Strikingly, this evolutionary analysis revealed that the bat PyVs were paraphyletic, suggestive of multiple species jumps between bats and other mammalian species, such that the theory of virus–host co-divergence for mammalian PyVs as a whole could be rejected. In addition, evidence was found for strong heterogeneity in evolutionary rate and potential recombination in a number of PyV complete genomes, which complicates both phylogenetic analysis and virus classification. In summary, this study revealed that bats are important reservoirs of PyVs and that these viruses have a complex evolutionary history.


Author(s):  
Isaäc J. Nijman ◽  
Benjamin D. Rosen ◽  
Zhuqing Zheng ◽  
Yu Jiang ◽  
Tristan Cumer ◽  
...  

AbstractThe male-specific part of the Y-chromosome is in mammalian and many other species the longest haplotype that is inherited without recombination. By its paternal transmission it has a small effective population size in species with dominant males. In several species, Y-chromosomal haplotypes are sensitive markers of population history and introgression. Previous studies have identified in domestic goats four major Y-chromosomal haplotypes Y1A, Y1B, Y2A and Y2B with a marked geographic differentiation and several regional variants. In this study we used published whole-genome sequences of 70 male goats from 16 modern breeds, 11 ancient-DNA samples and 29 samples from seven wild goat species. We identified single-copy male-specific SNPs in four scaffolds, containing SRY, ZFY, DBY with SSX3Y and UTY, and USP9Y with UMN2001, respectively. Phylogenetic analyses indicated haplogroups corresponding to the haplotypes Y1B, Y2A and Y2B, respectively, but Y1A was split into Y1AA and Y1AB. All haplogroups were detected in ancient DNA samples from southeast Europe and, with the exception of Y1AB, in the bezoar goat, which is the wild ancestor of the domestic goats. Combining these data with those of previous studies and with genotypes obtained by Sanger sequencing or the KASP assay yielded haplogroup distributions for 132 domestic breeds or populations. The phylogeographic differentiation indicated paternal population bottlenecks on all three continents. This possibly occurred during the Neolithic introductions of domestic goats to those continents with a particularly strong influence in Europe along the Danubian route. This study illustrates the power of the Y-chromosomal haplotype for the reconstructing the history of mammalian species with a wide geographic range.


2020 ◽  
Vol 130 (3) ◽  
pp. 563-577
Author(s):  
Huihui Wu ◽  
Qianhong Gu ◽  
Chuanjiang Zhou ◽  
Yongtao Tang ◽  
Martin Husemann ◽  
...  

Abstract The geological structure and history of mountains often cause highly complex patterns of evolution. The origin and diversity of the genus Triplophysa is considered to be closely associated with the rapid and persistent rise of the Qinghai-Tibet Plateau (QTP). Species of the genus are widely distributed in the QTP and adjacent regions, and are strongly adapted to its extreme environments. However, the Central Chinese Mountains (CCM), which are far apart from the QTP, also have many Triplophysa populations and yet their taxonomy, phylogeny and origin are unknown. We used three mitochondrial genes of 266 individuals from 29 sites in the CCM to shed light on the evolution of these Triplophysa populations. Phylogenetic analyses and species delimitation revealed seven distinct molecular operational taxonomic units (mOTUs) in the CCM, each with low genetic diversity. Molecular clock and biogeographic analyses suggested that vicariance events resulting from the rapid uplifting of the Qinling and Taihang Mountains initialized diversification in the Pliocene. During the early Pleistocene, dispersal events in the central parts of the Yellow River drainage altered genetic diversity and led to the currently observed biogeographic patterns. Our results suggest the presence of at least six species of Triplophysa in the CCM and more are likely to be discovered in the future.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Sergio D. Pérez ◽  
Jared A. Grummer ◽  
Renata C. Fernandes-Santos ◽  
Caroline Testa José ◽  
Emília Patrícia Medici ◽  
...  

Abstract Background A considerable amount of evidence has favored ecological host-fitting, rather than coevolution, as the main mechanism responsible for trypanosome divergence. Nevertheless, beyond the study of human pathogenic trypanosomes, the genetic basis of host specificity among trypanosomes isolated from forest-inhabiting hosts remains largely unknown. Methods To test possible scenarios on ecological host-fitting and coevolution, we combined a host capture recapture strategy with parasite genetic data and studied the genetic variation, population dynamics and phylogenetic relationships of Trypanosoma terrestris, a recently described trypanosome species isolated from lowland tapirs in the Brazilian Pantanal and Atlantic Forest biomes. Results We made inferences of T. terrestris population structure at three possible sources of genetic variation: geography, tapir hosts and ‘putative’ vectors. We found evidence of a bottleneck affecting the contemporary patterns of parasite genetic structure, resulting in little genetic diversity and no evidence of genetic structure among hosts or biomes. Despite this, a strongly divergent haplotype was recorded at a microgeographical scale in the landscape of Nhecolândia in the Pantanal. However, although tapirs are promoting the dispersion of the parasites through the landscape, neither geographical barriers nor tapir hosts were involved in the isolation of this haplotype. Taken together, these findings suggest that either host-switching promoted by putative vectors or declining tapir population densities are influencing the current parasite population dynamics and genetic structure. Similarly, phylogenetic analyses revealed that T. terrestris is strongly linked to the evolutionary history of its perissodactyl hosts, suggesting a coevolving scenario between Perissodactyla and their trypanosomes. Additionally, T. terrestris and T. grayi are closely related, further indicating that host-switching is a common feature promoting trypanosome evolution. Conclusions This study provides two lines of evidence, both micro- and macroevolutionary, suggesting that both host-switching by ecological fitting and coevolution are two important and non-mutually-exclusive processes driving the evolution of trypanosomes. In line with other parasite systems, our results support that even in the face of host specialization and coevolution, host-switching may be common and is an important determinant of parasite diversification.


Parasitology ◽  
2018 ◽  
Vol 146 (3) ◽  
pp. 356-362 ◽  
Author(s):  
Brenda Solórzano García ◽  
Amanda D. Melin ◽  
Filippo Aureli ◽  
Gerardo Pérez Ponce de León

AbstractPatterns of genetic variation among populations can reveal the evolutionary history of species. Pinworm parasites are highly host specific and form strong co-evolutionary associations with their primate hosts. Here, we describe the genetic variation observed in four Trypanoxyuris species infecting different howler and spider monkey subspecies in Central America to determine if historical dispersal processes and speciation in the host could explain the genetic patterns observed in the parasites. Mitochondrial (cox1) and ribosomal (28S) DNA were analysed to assess genetic divergence and phylogenetic history of these parasites. Sequences of the 28S gene were identical within pinworms species regardless of host subspecies. However, phylogenetic analyses, haplotype relationships and genetic divergence with cox1 showed differentiation between pinworm populations according to host subspecies in three of the four Trypanoxyuris species analysed. Haplotype separation between host subspecies was not observed in Trypanoxyuris minutus, nor in Trypanoxyuris atelis from Ateles geoffoyi vellerosus and Ateles geoffoyi yucatanensis. Levels of genetic diversity and divergence in these parasites relate with such estimates reported for their hosts. This study shows how genetic patterns uncovered in parasitic organisms can reflect the host phylogenetic and biogeographic histories.


2012 ◽  
Vol 93 (2) ◽  
pp. 223-234 ◽  
Author(s):  
Shelley Cook ◽  
Gregory Moureau ◽  
Andrew Kitchen ◽  
Ernest A. Gould ◽  
Xavier de Lamballerie ◽  
...  

There has been an explosion in the discovery of ‘insect-specific’ flaviviruses and/or their related sequences in natural mosquito populations. Herein we review all ‘insect-specific’ flavivirus sequences currently available and conduct phylogenetic analyses of both the ‘insect-specific’ flaviviruses and available sequences of the entire genus Flavivirus. We show that there is no statistical support for virus–mosquito co-divergence, suggesting that the ‘insect-specific’ flaviviruses may have undergone multiple introductions with frequent host switching. We discuss potential implications for the evolution of vectoring within the family Flaviviridae. We also provide preliminary evidence for potential recombination events in the history of cell fusing agent virus. Finally, we consider priorities and guidelines for future research on ‘insect-specific’ flaviviruses, including the vast potential that exists for the study of biodiversity within a range of potential hosts and vectors, and its effect on the emergence and maintenance of the flaviviruses.


1999 ◽  
Vol 73 (4) ◽  
pp. 3301-3308 ◽  
Author(s):  
Laurence Bénit ◽  
Jean-Baptiste Lallemand ◽  
Jean-François Casella ◽  
Hervé Philippe ◽  
Thierry Heidmann

ABSTRACT We have previously identified in the human genome a family of 200 endogenous retrovirus-like elements, the HERV-L elements, disclosing similarities with the foamy retroviruses and which might be the evolutionary intermediate between classical intracellular retrotransposons and infectious retroviruses. Southern blot analysis of a large series of mammalian genomic DNAs shows that HERV-L-related elements—so-called ERV-L—are present among all placental mammals, suggesting that ERV-L elements were already present at least 70 million years ago. Most species exhibit a low copy number of ERV-L elements (from 10 to 30), while simians (not prosimians) and mice (not rats) have been subjected to bursts resulting in increases in the number of copies up to 200. The burst of copy number in primates can be dated to shortly after the prosimian and simian branchpoint, 45 to 65 million years ago, whereas murine species have been subjected to two much more recent bursts (less than 10 million years ago), occurring after theMus/Rattus split. We have amplified and sequenced 360-bp ERV-L internal fragments of the highly conserved pol gene from a series of 22 mammalian species. These sequences exhibit high percentages of identity (57 to 99%) with the murine fully coding MuERV-L element. Phylogenetic analyses allowed the establishment of a plausible evolutionary scheme for ERV-L elements, which accounts for the high level of sequence conservation and the widespread dispersion among mammals.


2021 ◽  
Author(s):  
Anastasia Ignatieva ◽  
Jotun Hein ◽  
Paul A. Jenkins

AbstractThe evolutionary process of genetic recombination has the potential to rapidly change the properties of a viral pathogen, and its presence is a crucial factor to consider in the development of treatments and vaccines. It can also significantly affect the results of phylogenetic analyses and the inference of evolutionary rates. The detection of recombination from samples of sequencing data is a very challenging problem, and is further complicated for SARS-CoV-2 by its relatively slow accumulation of genetic diversity. The extent to which recombination is ongoing for SARS-CoV-2 is not yet resolved. To address this, we use a parsimony-based method to reconstruct possible genealogical histories for samples of SARS-CoV-2 sequences, which enables the analysis of recombination events that could have generated the data. We propose a framework for disentangling the effects of recurrent mutation from recombination in the history of a sample, and hence provide a way of estimating the probability that ongoing recombination is present. We apply this to samples of sequencing data collected in England and in South Africa, and find evidence of ongoing recombination.


Sign in / Sign up

Export Citation Format

Share Document