scholarly journals Group B Coxsackievirus Diabetogenic Phenotype Correlates with Replication Efficiency

2006 ◽  
Vol 80 (11) ◽  
pp. 5637-5643 ◽  
Author(s):  
Toru Kanno ◽  
Kisoon Kim ◽  
Ken Kono ◽  
Kristen M. Drescher ◽  
Nora M. Chapman ◽  
...  

ABSTRACT Group B coxsackieviruses can initiate rapid onset type 1 diabetes (T1D) in old nonobese diabetic (NOD) mice. Inoculating high doses of poorly pathogenic CVB3/GA per mouse initiated rapid onset T1D. Viral protein was detectable in islets shortly after inoculation in association with beta cells as well as other primary islet cell types. The virulent strain CVB3/28 replicated to higher titers more rapidly than CVB3/GA in the pancreas and in established beta cell cultures. Exchange of 5′-nontranslated regions between the two CVB3 strains demonstrated a variable impact on replication in beta cell cultures and suppression of in vivo replication for both strains. While any CVB strain may be able to induce T1D in prediabetic NOD mice, T1D onset is linked both to the viral replication rate and infectious dose.

1997 ◽  
Vol 16 (2) ◽  
pp. 106-114 ◽  
Author(s):  
Christopher D Lindsay ◽  
Joy L Hambrook

The A549 cell line was used as a model of the deep lung to study the toxicity and mechanism of action of sulphur mustard (HD), using the neutral red (NR) dye retention and gentian violet (GV) assays as indices of cell viability. It was found that exposure to concentrations in excess of 40 μM HD resulted in a rapid onset of toxicity. Exposure to 1000 μM HD reduced viability in A549 cell cultures to 61% after 2 h (control cultures=100%), whereas exposure to 40 μM HD did not result in deleterious effects until 26 h at which point viability fell to only 84% (NR assay). Agarose gel electrophoresis of cell cultures exposed to 40 and 1000 μM HD and harvested at 4.5, 19 and 43 h after exposure to HD, indicated that cell death was due to necrosis, despite the observation that at the higher concentration of HD cells displayed many of the features common to cells undergoing apoptotic death. The ability of hexamethylenetetramine (HMT) to protect A549 cells against the effects of an LC50 challenge dose of HD was assessed using the GV and NR assays. It was found that HMT (15 mM) could protect cells against the effects of HD though HMT had to be present at the time of HD challenge. Cultures treated with HD only were 49% viable at 48 h after HD challenge, compared to 101% for protected cultures (NR assay) and 58% and 91% for unprotected and protected cultures respectively using the GV assay. Morphological observations of GV and NR stained cultures confirmed these findings. HMT concen trations of 2.5 to 25 mM were used. Maximal protection against the toxic effects of HD (LC50) was found at 10 to 25 mM HMT. Over this concentration range, HMT did not exert any toxic effects on A549 cells. Pretreatment of A549 cultures with HMT followed by its removal prior to HD challenge had no protective effect. Similarly, treating cultures with HD followed by addition of HMT did not increase the viability of the cultures, even if the HMT was added immediately after HD exposure. HMT was found to protect against the toxic effects ofHD, though it must be present at the time ofHD challenge. A549 cells were found to be a valuable experimental model for studying the toxicology of HD and other lung damaging agents, and for screening other compounds for potential therapeutic efficacy as a prelude to studies with non- transformed cell culture systems and in vivo models.


Blood ◽  
1990 ◽  
Vol 75 (1) ◽  
pp. 305-312 ◽  
Author(s):  
AR Migliaccio ◽  
G Migliaccio ◽  
G Johnson ◽  
JW Adamson ◽  
B Torok-Storb

Abstract We compared the erythroid burst-promoting activity (BPA) and colony- stimulating activity (CSA) released under serum-deprived conditions by stromal cells derived from nine normal subjects and from nine patients after bone marrow transplantation. BPA and CSA were defined according to the capacity of the conditioned media (CM) to stimulate formation of erythroid bursts and granulocyte/macrophage (GM) colonies in serum- deprived cultures of nonadherent marrow cells. Six patients (group A) failed to establish or maintain successful allografts during the study. The remaining three (group B) did not experience problems with engraftment. CM from all stromal cell cultures contained detectable levels of BPA. Preincubation of the CM with an anti-GM colony- stimulating factor (GM-CSF) monoclonal antibody (MoAb), but not with a rabbit anti-interleukin-3 (IL-3) serum, reduced BPA by an average of 94%. CM from normal and group B stromal cell cultures contained detectable CSA, and the levels correlated with the amounts of granulocyte-CSF (G-CSF) detected by a specific bioassay. G-CSF was not detectable in medium conditioned by stromal cells from transplanted patients with poor marrow function. These results indicate that CM from stromal cells from normal subjects and transplanted patients with good marrow function contain both GM-CSF and G-CSF, while CM from stromal cells from transplanted patients with poor marrow function contain detectable levels of GM-CSF only. The reduced capacity of these stromal cells to produce G-CSF is associated with a reduced capacity of the CM to sustain GM colony formation and may be associated with the inability of these patients to sustain their neutrophil counts in vivo.


ChemTexts ◽  
2021 ◽  
Vol 7 (2) ◽  
Author(s):  
Sigurd Lenzen

AbstractThe biosynthesis of insulin takes place in the insulin-producing beta cells that are organized in the form of islets of Langerhans together with a few other islet cell types in the pancreas organ. The signal for glucose-induced insulin secretion is generated in two pathways in the mitochondrial metabolism of the pancreatic beta cells. These pathways are also known as the triggering pathway and the amplifying pathway. Glucokinase, the low-affinity glucose-phosphorylating enzyme in beta cell glycolysis acts as the signal-generating enzyme in this process. ATP ultimately generated is the crucial second messenger in this process. Insulin-producing pancreatic beta cells are badly protected against oxidative stress resulting in a particular vulnerability of this islet cell type due to low expression of H2O2-inactivating enzymes in various subcellular locations, specifically in the cytosol, mitochondria, peroxisomes and endoplasmic reticulum. This is in contrast to the glucagon-producing alpha cells and other islet cell types in the islets that are well equipped with these H2O2-inactivating enzymes. On the other hand the membranes of the pancreatic beta cells are well protected against lipid peroxidation and ferroptosis through high level expression of glutathione peroxidase 4 (GPx4) and this again is at variance from the situation in the non-beta cells of the islets with a low expression level of GPx4. The weak antioxidative defence equipment of the pancreatic beta cells, in particular in states of disease, is very dangerous because the resulting particular vulnerability endangers the functionality of the beta cells, making people prone to the development of a diabetic metabolic state.


Diabetologia ◽  
2020 ◽  
Vol 63 (10) ◽  
pp. 2064-2075
Author(s):  
Tilo Moede ◽  
Ingo B. Leibiger ◽  
Per-Olof Berggren

Abstract The islet of Langerhans is a complex endocrine micro-organ consisting of a multitude of endocrine and non-endocrine cell types. The two most abundant and prominent endocrine cell types, the beta and the alpha cells, are essential for the maintenance of blood glucose homeostasis. While the beta cell produces insulin, the only blood glucose-lowering hormone of the body, the alpha cell releases glucagon, which elevates blood glucose. Under physiological conditions, these two cell types affect each other in a paracrine manner. While the release products of the beta cell inhibit alpha cell function, the alpha cell releases factors that are stimulatory for beta cell function and increase glucose-stimulated insulin secretion. The aim of this review is to provide a comprehensive overview of recent research into the regulation of beta cell function by alpha cells, focusing on the effect of alpha cell-secreted factors, such as glucagon and acetylcholine. The consequences of differences in islet architecture between species on the interplay between alpha and beta cells is also discussed. Finally, we give a perspective on the possibility of using an in vivo imaging approach to study the interactions between human alpha and beta cells under in vivo conditions.


1969 ◽  
Vol 43 (3) ◽  
pp. 415-425 ◽  
Author(s):  
CORNELIA P. CHANNING

SUMMARY Granulosa cells were harvested from follicles of mares at various stages of the oestrous cycle and maintained in a tissue culture medium containing 15% horse serum, 30% medium '199' and 55% Hanks's solution. Between days 4 and 10 of culture the granulosa cells harvested from small follicles (1–2 cm. diam.) of mares in the midluteal phase of the cycle secreted an average of 0·36 pg. progesterone/cell/day. Cells harvested from large follicles of mares in the late and/or early oestrous stage of the cycle secreted an average of 29·5 pg. progesterone cell/day; the cells harvested from the large vascular follicles found at oestrus secreted an average of 173 pg./cell/day. The small, poorly vascularized follicles found adjacent to the large vascular follicles of mares in oestrus yielded cells which secreted less progesterone than those from the larger follicles. Addition of 5 to 10 i.u. human chorionic gonadotrophin (HCG)/ml. at each medium change (every 2–3 days) or for the first 4 days of culture brought about a marked stimulation of progesterone secretion in cultures of ' mid-luteal phase' cells which was maximal after 4 to 7 days. Pregnenolone was converted primarily to progesterone, 20α-hydroxypregn-4-en-3-one and 17-hydroxyprogesterone; the metabolism was not significantly altered by the addition of a mixture of 10 i.u. HCG plus 10 i.u. pregnant mare serum gonadotrophin (PMSG). Cells harvested from mares in oestrus converted pregnenolone to progesterone in a higher yield compared with cells harvested from mares in the midluteal phase of the cycle. Addition of 10 i.u. HCG/ml. or PMSG plus HCG (10 i.u. each/ml.) stimulated aromatization of testosterone by 'midluteal phase' cultures but not by 'oestrous phase' cell cultures. These results demonstrate that the in vivo environment as well as the in vitro conditions influence the steroidogenic activity of equine granulosa cell cultures.


2020 ◽  
Author(s):  
Yu Hsuan Carol Yang ◽  
Linford J.B. Briant ◽  
Christopher Raab ◽  
Sri Teja Mullapudi ◽  
Hans-Martin Maischein ◽  
...  

AbstractDirect modulation of pancreatic endocrine cell activity by autonomic innervation has been debated. To resolve this question, we established an in vivo imaging model which also allows chronic and acute neuromodulation. Starting at a stage when zebrafish islet architecture is reminiscent of that in adult rodents, we imaged calcium dynamics simultaneously in multiple islet cell types. We first find that activity coupling between beta cells increases upon glucose exposure. Surprisingly, glucose exposure also increases alpha-alpha, alpha-beta and beta-delta coordination. We further show that both chronic and acute loss of nerve activity diminish activity coupling, as observed upon gap junction depletion. Notably, chronic loss of innervation severely disrupts delta cell activity, suggesting that delta cells receive innervation which coordinates its output. Overall, these data show that innervation plays a vital role in the establishment and maintenance of homotypic and heterotypic cellular connectivity in pancreatic islets, a process critical for islet function.


Blood ◽  
1990 ◽  
Vol 75 (1) ◽  
pp. 305-312 ◽  
Author(s):  
AR Migliaccio ◽  
G Migliaccio ◽  
G Johnson ◽  
JW Adamson ◽  
B Torok-Storb

We compared the erythroid burst-promoting activity (BPA) and colony- stimulating activity (CSA) released under serum-deprived conditions by stromal cells derived from nine normal subjects and from nine patients after bone marrow transplantation. BPA and CSA were defined according to the capacity of the conditioned media (CM) to stimulate formation of erythroid bursts and granulocyte/macrophage (GM) colonies in serum- deprived cultures of nonadherent marrow cells. Six patients (group A) failed to establish or maintain successful allografts during the study. The remaining three (group B) did not experience problems with engraftment. CM from all stromal cell cultures contained detectable levels of BPA. Preincubation of the CM with an anti-GM colony- stimulating factor (GM-CSF) monoclonal antibody (MoAb), but not with a rabbit anti-interleukin-3 (IL-3) serum, reduced BPA by an average of 94%. CM from normal and group B stromal cell cultures contained detectable CSA, and the levels correlated with the amounts of granulocyte-CSF (G-CSF) detected by a specific bioassay. G-CSF was not detectable in medium conditioned by stromal cells from transplanted patients with poor marrow function. These results indicate that CM from stromal cells from normal subjects and transplanted patients with good marrow function contain both GM-CSF and G-CSF, while CM from stromal cells from transplanted patients with poor marrow function contain detectable levels of GM-CSF only. The reduced capacity of these stromal cells to produce G-CSF is associated with a reduced capacity of the CM to sustain GM colony formation and may be associated with the inability of these patients to sustain their neutrophil counts in vivo.


Scientifica ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-22 ◽  
Author(s):  
Paolo Meda

The islets of Langerhans collectively form the endocrine pancreas, the organ that is soley responsible for insulin secretion in mammals, and which plays a prominent role in the control of circulating glucose and metabolism. Normal function of these islets implies the coordination of different types of endocrine cells, noticeably of the beta cells which produce insulin. Given that an appropriate secretion of this hormone is vital to the organism, a number of mechanisms have been selected during evolution, which now converge to coordinate beta cell functions. Among these, several mechanisms depend on different families of integral membrane proteins, which ensure direct (cadherins, N-CAM, occludin, and claudins) and paracrine communications (pannexins) between beta cells, and between these cells and the other islet cell types. Also, other proteins (integrins) provide communication of the different islet cell types with the materials that form the islet basal laminae and extracellular matrix. Here, we review what is known about these proteins and their signaling in pancreaticβ-cells, with particular emphasis on the signaling provided by Cx36, given that this is the integral membrane protein involved in cell-to-cell communication, which has so far been mostly investigated for effects on beta cell functions.


Viruses ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1298
Author(s):  
Robert Koban ◽  
Tobias Lam ◽  
Franziska Schwarz ◽  
Lutz Kloke ◽  
Silvio Bürge ◽  
...  

Studies of virus–host interactions in vitro may be hindered by biological characteristics of conventional monolayer cell cultures that differ from in vivo infection. Three-dimensional (3D) cell cultures show more in vivo-like characteristics and may represent a promising alternative for characterisation of infections. In this study, we established easy-to-handle cell culture platforms based on bioprinted 3D matrices for virus detection and characterisation. Different cell types were cultivated on these matrices and characterised for tissue-like growth characteristics regarding cell morphology and polarisation. Cells developed an in vivo-like morphology and long-term cultivation was possible on the matrices. Cell cultures were infected with viruses which differed in host range, tissue tropism, cytopathogenicity, and genomic organisation and virus morphology. Infections were characterised on molecular and imaging level. The transparent matrix substance allowed easy optical monitoring of cells and infection even via live-cell microscopy. In conclusion, we established an enhanced, standardised, easy-to-handle bioprinted 3D-cell culture system. The infection models are suitable for sensitive monitoring and characterisation of virus–host interactions and replication of different viruses under physiologically relevant conditions. Individual cell culture models can further be combined to a multicellular array. This generates a potent diagnostic tool for propagation and characterisation of viruses from diagnostic samples.


Sign in / Sign up

Export Citation Format

Share Document