scholarly journals Essential Role for either TRS1 or IRS1 in Human Cytomegalovirus Replication

2009 ◽  
Vol 83 (9) ◽  
pp. 4112-4120 ◽  
Author(s):  
Emily E. Marshall ◽  
Craig J. Bierle ◽  
Wolfram Brune ◽  
Adam P. Geballe

ABSTRACT Viral infections often produce double-stranded RNA (dsRNA), which in turn triggers potent antiviral responses, including the global repression of protein synthesis mediated by protein kinase R (PKR) and 2′-5′ oligoadenylate synthetase (OAS). As a consequence, many viruses have evolved genes, such as those encoding dsRNA-binding proteins, which counteract these pathways. Human cytomegalovirus (HCMV) encodes two related proteins, pTRS1 and pIRS1, which bind dsRNA and can prevent activation of the PKR and OAS pathways. HCMV mutants lacking either IRS1 or TRS1 replicate at least moderately well in cell culture. However, as we demonstrate in the present study, an HCMV mutant lacking both IRS1 and TRS1 (HCMV[ΔI/ΔT]) has a severe replication defect. Infection with HCMV[ΔI/ΔT] results in a profound inhibition of overall and viral protein synthesis, as well as increased phosphorylation of eukaryotic initiation factor 2α (eIF2α). The vaccinia virus E3L gene can substitute for IRS1 or TRS1, enabling HCMV replication. Despite the accumulation of dsRNA in HCMV-infected cells, the OAS pathway remains inactive, even in HCMV[ΔI/ΔT]-infected cells. These results suggest that PKR-mediated phosphorylation of eIF2α is the dominant dsRNA-activated pathway responsible for inhibition of protein synthesis and HCMV replication in the absence of both IRS1 and TRS1 and that the requirement for evasion of the PKR pathway likely explains the necessity for IRS1 or TRS1 for productive infection.

2016 ◽  
Vol 90 (8) ◽  
pp. 3839-3848 ◽  
Author(s):  
Benjamin Ziehr ◽  
Heather A. Vincent ◽  
Nathaniel J. Moorman

ABSTRACTHuman cytomegalovirus (HCMV) counteracts host defenses that otherwise act to limit viral protein synthesis. One such defense is the antiviral kinase protein kinase R (PKR), which inactivates the eukaryotic initiation factor 2 (eIF2) translation initiation factor upon binding to viral double-stranded RNAs. Previously, the viral TRS1 and IRS1 proteins were found to antagonize the antiviral kinase PKR outside the context of HCMV infection, and the expression of either pTRS1 or pIRS1 was shown to be necessary for HCMV replication. In this study, we found that expression of either pTRS1 or pIRS1 is necessary to prevent PKR activation during HCMV infection and that antagonism of PKR is critical for efficient viral replication. Consistent with a previous study, we observed decreased overall levels of protein synthesis, reduced viral protein expression, and diminished virus replication in the absence of both pTRS1 and pIRS1. In addition, both PKR and eIF2α were phosphorylated during infection when pTRS1 and pIRS1 were absent. We also found that expression of pTRS1 was both necessary and sufficient to prevent stress granule formation in response to eIF2α phosphorylation. Depletion of PKR prevented eIF2α phosphorylation, rescued HCMV replication and protein synthesis, and reversed the accumulation of stress granules in infected cells. Infection with an HCMV mutant lacking the pTRS1 PKR binding domain resulted in PKR activation, suggesting that pTRS1 inhibits PKR through a direct interaction. Together our results show that antagonism of PKR by HCMV pTRS1 and pIRS1 is critical for viral protein expression and efficient HCMV replication.IMPORTANCETo successfully replicate, viruses must counteract host defenses that limit viral protein synthesis. We have identified inhibition of the antiviral kinase PKR by the viral proteins TRS1 and IRS1 and shown that this is a critical step in HCMV replication. Our results suggest that inhibiting pTRS1 and pIRS1 function or restoring PKR activity during infection may be a successful strategy to limit HCMV disease.


2010 ◽  
Vol 84 (20) ◽  
pp. 10457-10466 ◽  
Author(s):  
Margarito Rojas ◽  
Carlos F. Arias ◽  
Susana López

ABSTRACT The eukaryotic initiation translation factor 2 (eIF2) represents a key point in the regulation of protein synthesis. This factor delivers the initiator Met-tRNA to the ribosome, a process that is conserved in all eukaryotic cells. Many types of stress reduce global translation by triggering the phosphorylation of the α subunit of eIF2, which reduces the formation of the preinitiation translation complexes. Early during rotavirus infection, eIF2α becomes phosphorylated, and even under these conditions viral protein synthesis is not affected, while most of the cell protein synthesis is blocked. Here, we found that the kinase responsible for the phosphorylation of eIF2α in rotavirus-infected cells is PKR, since in mouse embryonic fibroblasts deficient in the kinase domain of PKR, or in MA104 cells where the expression of PKR was knocked down by RNA interference, eIF2α was not phosphorylated upon rotavirus infection. The viral component responsible for the activation of PKR seems to be viral double-stranded RNA, which is found in the cytoplasm of infected cells, outside viroplasms. Taken together, these results suggest that rotaviruses induce the PKR branch of the interferon system and have evolved a mechanism to translate its proteins, surpassing the block imposed by eIF2α phosphorylation.


2017 ◽  
Author(s):  
Patrick D. Slaine ◽  
Mariel Kleer ◽  
Nathan Smith ◽  
Denys A. Khaperskyy ◽  
Craig McCormick

ABSTRACTEukaryotic translation initiation factor 4A (eIF4A) is a helicase that facilitates assembly of the translation preinitiation complex by unwinding structured mRNA 5’ untranslated regions. Pateamine A (PatA) and silvestrol are natural products that disrupt eIF4A function and arrest translation, thereby triggering the formation of cytoplasmic aggregates of stalled preinitiation complexes known as stress granules (SGs). Here we examined the effects of eIF4A inhibition by PatA and silvestrol on influenza A virus (IAV) protein synthesis and replication in cell culture. Treatment of infected cells with either PatA or silvestrol at early times post-infection results in SG formation, arrest of viral protein synthesis and failure to replicate the viral genome. PatA, which irreversibly binds to eIF4A, sustained long-term blockade of IAV replication following drug withdrawal, and inhibited IAV replication at concentrations that had minimal cytotoxicity. By contrast, the antiviral effects of silvestrol were fully reversible; drug withdrawal caused rapid SG dissolution and resumption of viral protein synthesis. IAV inhibition by silvestrol was invariably associated with cytotoxicity. PatA blocked replication of genetically divergent IAV strains, suggesting common dependence on host eIF4A activity. This study demonstrates the feasibility of targeting core host protein synthesis machinery to prevent viral replication.IMPORTANCEInfluenza A virus (IAV) relies on cellular protein synthesis to decode viral messenger RNAs. Pateamine A and silvestrol are natural products that inactivate an essential protein synthesis protein known as eIF4A. Here we show that IAV is sensitive to these eIF4A inhibitor drugs. Treatment of infected cells with pateamine A or silvestrol prevented synthesis of viral proteins, viral genome replication and release of infectious virions. The irreversible eIF4A inhibitor pateamine A sustained long-term blockade of viral replication, whereas viral protein synthesis quickly resumed after silvestrol was removed from infected cells. Prolonged incubation of either infected or uninfected cells with these drugs induced the programmed cell death cascade called apoptosis. Our findings suggest that core components of the host protein synthesis machinery are viable targets for antiviral drug discovery. The most promising drug candidates should selectively block protein synthesis in infected cells without perturbing bystander uninfected cells.


2002 ◽  
Vol 76 (10) ◽  
pp. 4912-4918 ◽  
Author(s):  
Stephanie J. Child ◽  
Sohail Jarrahian ◽  
Victoria M. Harper ◽  
Adam P. Geballe

ABSTRACT The cellular response to viral infection often includes activation of pathways that shut off protein synthesis and thereby inhibit viral replication. In order to enable efficient replication, many viruses carry genes such as the E3L gene of vaccinia virus that counteract these host antiviral pathways. Vaccinia virus from which the E3L gene has been deleted (VVΔE3L) is highly sensitive to interferon and exhibits a restricted host range, replicating very inefficiently in many cell types, including human fibroblast and U373MG cells. To determine whether human cytomegalovirus (CMV) has a mechanism for preventing translational shutoff, we evaluated the ability of CMV to complement the deficiencies in replication and protein synthesis associated with VVΔE3L. CMV, but not UV-inactivated CMV, rescued VVΔE3L late gene expression and replication. Thus, complementation of the VVΔE3L defect appears to depend on de novo CMV gene expression and is not likely a result of CMV binding to the cell receptor or of a virion structural protein. CMV rescued VVΔE3L late gene expression even in the presence of ganciclovir, indicating that CMV late gene expression is not required for complementation of VVΔE3L. The striking decrease in overall translation after infection with VVΔE3L was prevented by prior infection with CMV. Finally, CMV blocked both the induction of eukaryotic initiation factor 2α (eIF2α) phosphorylation and activation of RNase L by VVΔE3L. These results suggest that CMV has one or more immediate-early or early genes that ensure maintenance of a high protein synthetic capacity during infection by preventing activation of the PKR/eIF2α phosphorylation and 2-5A oligoadenylate synthetase/RNase L pathways.


2009 ◽  
Vol 83 (23) ◽  
pp. 12462-12472 ◽  
Author(s):  
Xiaoxing Wang ◽  
Ying Liao ◽  
Pei Ling Yap ◽  
Kim J. Png ◽  
James P. Tam ◽  
...  

ABSTRACT A diversity of strategies is evolved by RNA viruses to manipulate the host translation machinery in order to create an optimal environment for viral replication and progeny production. One of the common viral targets is the α subunit of eukaryotic initiation factor 2 (eIF-2α). In this report, we show that phosphorylation of eIF-2α was severely suppressed in human and animal cells infected with the coronavirus infectious bronchitis virus (IBV). To understand whether this suppression is through inhibition of protein kinase R (PKR), the double-stranded-RNA-dependent kinase that is one of the main kinases responsible for phosphorylation of eIF-2α, cells infected with IBV were analyzed by Western blotting. The results showed that the level of phosphorylated PKR was greatly reduced in IBV-infected cells. Overexpression of IBV structural and nonstructural proteins (nsp) demonstrated that nsp2 is a weak PKR antagonist. Furthermore, GADD34, a component of the protein phosphatase 1 (PP1) complex, which dephosphorylates eIF-2α, was significantly induced in IBV-infected cells. Inhibition of the PP1 activity by okadaic acid and overexpression of GADD34, eIF-2α, and PKR, as well as their mutant constructs in virus-infected cells, showed that these viral regulatory strategies played a synergistic role in facilitating coronavirus replication. Taken together, these results confirm that IBV has developed a combination of two mechanisms, i.e., blocking PKR activation and inducing GADD34 expression, to maintain de novo protein synthesis in IBV-infected cells and, meanwhile, to enhance viral replication.


2018 ◽  
Vol 92 (19) ◽  
Author(s):  
Sara Pautasso ◽  
Ganna Galitska ◽  
Valentina Dell'Oste ◽  
Matteo Biolatti ◽  
Rachele Cagliani ◽  
...  

ABSTRACTThe apolipoprotein B editing enzyme catalytic subunit 3 (APOBEC3) is a family of DNA cytosine deaminases that mutate and inactivate viral genomes by single-strand DNA editing, thus providing an innate immune response against a wide range of DNA and RNA viruses. In particular, APOBEC3A (A3A), a member of the APOBEC3 family, is induced by human cytomegalovirus (HCMV) in decidual tissues where it efficiently restricts HCMV replication, thereby acting as an intrinsic innate immune effector at the maternal-fetal interface. However, the widespread incidence of congenital HCMV infection implies that HCMV has evolved to counteract APOBEC3-induced mutagenesis through mechanisms that still remain to be fully established. Here, we have assessed gene expression and deaminase activity of various APOBEC3 gene family members in HCMV-infected primary human foreskin fibroblasts (HFFs). Specifically, we show that APOBEC3G (A3G) gene products and, to a lesser degree, those of A3F but not of A3A, are upregulated in HCMV-infected HFFs. We also show that HCMV-mediated induction of A3G expression is mediated by interferon beta (IFN-β), which is produced early during HCMV infection. However, knockout or overexpression of A3G does not affect HCMV replication, indicating that A3G is not a restriction factor for HCMV. Finally, through a bioinformatics approach, we show that HCMV has evolved mutational robustness against IFN-β by limiting the presence of A3G hot spots in essential open reading frames (ORFs) of its genome. Overall, our findings uncover a novel immune evasion strategy by HCMV with profound implications for HCMV infections.IMPORTANCEAPOBEC3 family of proteins plays a pivotal role in intrinsic immunity defense mechanisms against multiple viral infections, including retroviruses, through the deamination activity. However, the currently available data on APOBEC3 editing mechanisms upon HCMV infection remain unclear. In the present study, we show that particularly the APOBEC3G (A3G) member of the deaminase family is strongly induced upon infection with HCMV in fibroblasts and that its upregulation is mediated by IFN-β. Furthermore, we were able to demonstrate that neither A3G knockout nor A3G overexpression appears to modulate HCMV replication, indicating that A3G does not inhibit HCMV replication. This may be explained by HCMV escape strategy from A3G activity through depletion of the preferred nucleotide motifs (hot spots) from its genome. The results may shed light on antiviral potential of APOBEC3 activity during HCMV infection, as well as the viral counteracting mechanisms under A3G-mediated selective pressure.


2009 ◽  
Vol 84 (7) ◽  
pp. 3654-3665 ◽  
Author(s):  
Joanna Piotrowska ◽  
Spencer J. Hansen ◽  
Nogi Park ◽  
Katarzyna Jamka ◽  
Peter Sarnow ◽  
...  

ABSTRACT Stress granules are sites of mRNA storage formed in response to a variety of stresses, including viral infections. Here, the mechanisms and consequences of stress granule formation during poliovirus infection were examined. The results indicate that stress granules containing T-cell-restricted intracellular antigen 1 (TIA-1) and mRNA are stably constituted in infected cells despite lacking intact RasGAP SH3-domain binding protein 1 (G3BP) and eukaryotic initiation factor 4G. Fluorescent in situ hybridization revealed that stress granules in infected cells do not contain significant amounts of viral positive-strand RNA. Infection does not prevent stress granule formation in response to heat shock, indicating that poliovirus does not block de novo stress granule formation. A mutant TIA-1 protein that prevents stress granule formation during oxidative stress also prevents formation in infected cells. However, stress granule formation during infection is more dependent upon ongoing transcription than is formation during oxidative stress or heat shock. Furthermore, Sam68 is recruited to stress granules in infected cells but not to stress granules formed in response to oxidative stress or heat shock. These results demonstrate that stress granule formation in poliovirus-infected cells utilizes a transcription-dependent pathway that results in the appearance of stable, compositionally unique stress granules.


2012 ◽  
Vol 87 (3) ◽  
pp. 1720-1732 ◽  
Author(s):  
Eva Maria Borst ◽  
Jennifer Kleine-Albers ◽  
Ildar Gabaev ◽  
Marina Babić ◽  
Karen Wagner ◽  
...  

ABSTRACTCleavage of human cytomegalovirus (HCMV) genomes as well as their packaging into capsids is an enzymatic process mediated by viral proteins and therefore a promising target for antiviral therapy. The HCMV proteins pUL56 and pUL89 form the terminase and play a central role in cleavage-packaging, but several additional viral proteins, including pUL51, had been suggested to contribute to this process, although they remain largely uncharacterized. To study the function of pUL51 in infected cells, we constructed HCMV mutants encoding epitope-tagged versions of pUL51 and used a conditionally replicating virus (HCMV-UL51-ddFKBP), in which pUL51 levels could be regulated by a synthetic ligand. In cells infected with HCMV-UL51-ddFKBP, viral DNA replication was not affected when pUL51 was knocked down. However, no unit-length genomes and no DNA-filled C capsids were found, indicating that cleavage of concatemeric HCMV DNA and genome packaging into capsids did not occur in the absence of pUL51. pUL51 was expressed mainly with late kinetics and was targeted to nuclear replication compartments, where it colocalized with pUL56 and pUL89. Upon pUL51 knockdown, pUL56 and pUL89 were no longer detectable in replication compartments, suggesting that pUL51 is needed for their correct subnuclear localization. Moreover, pUL51 was found in a complex with the terminase subunits pUL56 and pUL89. Our data provide evidence that pUL51 is crucial for HCMV genome cleavage-packaging and may represent a third component of the viral terminase complex. Interference with the interactions between the terminase subunits by antiviral drugs could be a strategy to disrupt the HCMV replication cycle.


Viruses ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 499 ◽  
Author(s):  
Shelby Powell Kesterson ◽  
Jeffery Ringiesn ◽  
Vikram N. Vakharia ◽  
Brian S. Shepherd ◽  
Douglas W. Leaman ◽  
...  

Viral hemorrhagic septicemia virus (VHSV) is one of the most deadly infectious fish pathogens, posing a serious threat to the aquaculture industry and freshwater ecosystems worldwide. Previous work showed that VHSV sub-genotype IVb suppresses host innate immune responses, but the exact mechanism by which VHSV IVb inhibits antiviral response remains incompletely characterized. As with other novirhabdoviruses, VHSV IVb contains a unique and highly variable nonvirion (NV) gene, which is implicated in viral replication, virus-induced apoptosis and regulating interferon (IFN) production. However, the molecular mechanisms underlying the role of IVb NV gene in regulating viral or cellular processes is poorly understood. Compared to the wild-type recombinant (rWT) VHSV, mutant VHSV lacking a functional IVb NV reduced IFN expression and compromised innate immune response of the host cells by inhibiting translation. VHSV IVb infection increased phosphorylated eukaryotic initiation factor 2α (p-eIF2α), resulting in host translation shutoff. However, VHSV IVb protein synthesis proceeds despite increasing phosphorylation of eIF2α. During VHSV IVb infection, eIF2α phosphorylation was mediated via PKR-like endoplasmic reticulum kinase (PERK) and was required for efficient viral protein synthesis, but shutoff of host translation and IFN signaling was independent of p-eIF2α. Similarly, IVb NV null VHSV infection induced less p-eIF2α, but exhibited decreased viral protein synthesis despite increased levels of viral mRNA. These findings show a role for IVb NV in VHSV pathogenesis by utilizing the PERK-eIF2α pathway for viral-mediated host shutoff and interferon signaling to regulate host cell response.


2020 ◽  
Vol 64 (10) ◽  
Author(s):  
Beatrice Mercorelli ◽  
Anna Luganini ◽  
Marta Celegato ◽  
Giorgio Palù ◽  
Giorgio Gribaudo ◽  
...  

ABSTRACT Posaconazole (PCZ) is a clinically approved drug used predominantly for prophylaxis and salvage therapy of fungal infections. Here, we report its previously undescribed anti-human cytomegalovirus (HCMV) activity. By using antiviral assays, we demonstrated that PCZ, along with other azolic antifungals, has a broad anti-HCMV activity, being active against different strains, including low-passage-number clinical isolates and strains resistant to viral DNA polymerase inhibitors. Using a pharmacological approach, we identified the inhibition of human cytochrome P450 51 (hCYP51), or lanosterol 14α demethylase, a cellular target of posaconazole in infected cells, as a mechanism of anti-HCMV activity of the drug. Indeed, hCYP51 expression was stimulated upon HCMV infection, and the inhibition of its enzymatic activity by either the lanosterol analog VFV {(R)-N-(1-(3,4′-difluoro-[1,1′-biphenyl]-4-yl)-2-(1H-imidazol-1-yl)ethyl)-4-(5-phenyl-1,3,4-oxadiazol-2-yl)benzamide} or PCZ decreased HCMV yield and infectivity of released virus particles. Importantly, we observed that the activity of the first-line anti-HCMV drug ganciclovir was boosted tenfold by PCZ and that ganciclovir (GCV) and PCZ act synergistically in inhibiting HCMV replication. Taken together, these findings suggest that this clinically approved drug deserves further investigation in the development of host-directed antiviral strategies as a candidate anti-HCMV drug with a dual antimicrobial effect.


Sign in / Sign up

Export Citation Format

Share Document