scholarly journals Human Herpesvirus 6 Suppresses T Cell Proliferation through Induction of Cell Cycle Arrest in Infected Cells in the G2/M Phase

2011 ◽  
Vol 85 (13) ◽  
pp. 6774-6783 ◽  
Author(s):  
L. Li ◽  
B. Gu ◽  
F. Zhou ◽  
J. Chi ◽  
F. Wang ◽  
...  
Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4916-4916
Author(s):  
Tian-Hui Yang ◽  
Kathryn E Quintanilla ◽  
Amy M Cortez ◽  
Jeffrey J. Molldrem

Abstract Proteinase 3 (P3), a serine protease found in primary granules in granulocytes, is the target of T cell- and B cell-mediated autoimmunity in Wegener’s granulomatosis (WG) and of anti-leukemia immunity mediated by PR1 (VLQELNVTV)-specific cytotoxic T lymphocytes (PR1-CTL). Although aberrant P3 and neutrophil elasase (NE) expression in leukemia increases susceptibility to PR1-CTL-mediated killing, overexpression of P3 also induces apoptosis of the high affinity PR1-CTL leading to deletional tolerance and leukemia outgrowth. Because expression of P3 and NE in sera from leukemia patients is increased by 5-fold compared to healthy controls, we sought to determine whether such overexpression of P3 or NE impairs PR1-CTL immunity to leukemia by a direct affect on T lymphocytes. To study this, T cells from healthy donors were activated by anti-CD3 and anti-CD28 and exposed to increasing concentration of P3 or NE over one to five days, and the percentage of apoptotic cells and cell proliferation were determined by flow cytometry using PI, anti-Ki-67, and CFSE. P3, but not NE, induced dose-dependent apoptosis of up to 30% of T cells, and in the non-apoptotic cells, a 50% inhibition of CD4 and CD8 T cell proliferation at 1 μg/ml and 100% at 10 μg/ml compared to untreated cells. This effect was not enzyme-mediated since prior exposure of P3 to 56°C or co-incubation with the serine protease inhibitors Elafin and alpha-1 antitrypsin showed no affect on apoptosis or cell proliferation. P3 induced a cell cycle arrest at the G0/G1 interface, determined with PI and Ki-67 staining of healthy donor T cells that were exposed to P3 for up to 3 days. In contrast, at protein concentrations up to 25 μg/ml, NE showed no such inhibitory effect on apoptosis or cell proliferation. In addition to its role as a leukemia-associated antigen, P3 is also targeted by the cANCA antibody in patients with WG and the serum titer correlates with disease activity. Therefore, we hypothesized that the effect of P3 on T cell proliferation might also be affected by humoral immunity during circumstances of systemic autoimmunity. Co-incubation of P3 with a molar excess of cANCA reversed P3- mediated inhibition of both CD4 and CD8 T cells, consistent with a role of this antibody and the P3 target antigen in controlling T cell autoreactivity. Taken together, this data shows a new role for P3 in regulating T cell proliferation, which occurs only at high P3 concentration, similar to P3 in sera from leukemia patients, which is not enzymedependent. This supports a direct role for P3 in regulating both anti-leukemia immunity and autoimmunity. This data will need to be considered for effective immunotherapy targeting P3 in leukemia patients and these inhibitory effects also suggest a role for P3 in regulating autoimmunity at sites of inflammation, such as in patients with WG.


2014 ◽  
Vol 96 (3) ◽  
pp. 453-462 ◽  
Author(s):  
Johannes Wedel ◽  
Maximillia C. Hottenrott ◽  
Eleni Stamellou ◽  
Annette Breedijk ◽  
Charalambos Tsagogiorgas ◽  
...  

2005 ◽  
Vol 174 (8) ◽  
pp. 4590-4597 ◽  
Author(s):  
Prachi P. Trivedi ◽  
Paul C. Roberts ◽  
Norbert A. Wolf ◽  
Robert H. Swanborg

2013 ◽  
Vol 55 (4) ◽  
pp. 932-933
Author(s):  
Eyal Ben-Ami ◽  
Norberto Krivoy ◽  
Edna Efrati

PLoS ONE ◽  
2015 ◽  
Vol 10 (9) ◽  
pp. e0137420 ◽  
Author(s):  
Junko Mori ◽  
Akiko Kawabata ◽  
Huamin Tang ◽  
Kenjiro Tadagaki ◽  
Hiroyuki Mizuguchi ◽  
...  

2004 ◽  
Vol 134 (11) ◽  
pp. 3121-3126 ◽  
Author(s):  
James M. Visanji ◽  
Susan J. Duthie ◽  
Lynn Pirie ◽  
David G. Thompson ◽  
Philip J. Padfield

2022 ◽  
Vol 55 (1) ◽  
Author(s):  
Fatemeh Safari ◽  
Bahman Akbari

Abstract Background Chinese hamster ovary cell line has been used routinely as a bioproduction factory of numerous biopharmaceuticals. So far, various engineering strategies have been recruited to improve the production efficiency of this cell line such as apoptosis engineering. Previously, it is reported that the caspase-7 deficiency in CHO cells reduces the cell proliferation rate. But the effect of this reduction on the CHO cell productivity remained unclear. Hence, in the study at hand the effect of caspase-7 deficiency was assessed on the cell growth, viability and protein expression. In addition, the enzymatic activity of caspase-3 was investigated in the absence of caspase-7. Results Findings showed that in the absence of caspase-7, both cell growth and cell viability were decreased. Cell cycle analysis illustrated that the CHO knockout (CHO-KO) cells experienced a cell cycle arrest in G2/M phase. This cell cycle arrest resulted in a 1.7-fold increase in the expression of luciferase in CHO-KO cells compared to parenteral cells. Furthermore, in the apoptotic situation the enzymatic activity of caspase-3 in CHO-KO cells was approximately 3 times more than CHO-K1 cells. Conclusions These findings represented that; however, caspase-7 deficiency reduces the cell proliferation rate but the resulted cell cycle arrest leads to the enhancement of recombinant protein expression. Moreover, increasing in the caspase-3 enzymatic activity compensates the absence of caspase-7 in the caspase cascade of apoptosis.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Xiuying Li ◽  
Zhuo Xu ◽  
Jinping Bai ◽  
Shuyuan Yang ◽  
Shuli Zhao ◽  
...  

It has been reported that human mesenchymal stem cells are able to inhibit T lymphocyte activation; however, the discrepancy among different sources of MSCs is not well documented. In this study, we have compared the MSCs from bone marrow (BM), adipose tissue (AT), placenta (PL), and umbilical cord (UC) to determine which one displayed the most efficient immunosuppressive effects on phytohemagglutinin-induced T cell proliferation. Among them we found that hUC-MSC has the strongest effects on inhibiting T cell proliferation and is chosen to do the further study. We observed that T lymphocyte spontaneously released abundant IFN-γ. And IFN-γsecreted by T lymphocyte could induce the expression of indoleamine 2, 3-dioxygenase (IDO) in hUC-MSCs. IDO was previously reported to induce T lymphocyte apoptosis and cell cycle arrest in S phase. When cocultured with hUC-MSCs, T lymphocyte expression of caspase 3 was significantly increased, while Bcl2 and CDK4 mRNA expression decreased dramatically. Addition of 1-methyl tryptophan (1-MT), an IDO inhibitor, restored T lymphocyte proliferation, reduced apoptosis, and induced resumption of the cell cycle. In addition, the changes in caspase 3, CDK4, and Bcl2 expression were reversed by 1-MT. These findings demonstrate that hUC-MSCs induce T lymphocyte apoptosis and cell cycle arrest by expressing abundant IDO and provide an explanation for some of the immunomodulatory effects of MSCs.


2005 ◽  
Vol 79 (3) ◽  
pp. 1961-1965 ◽  
Author(s):  
Bodil Øster ◽  
Bettina Bundgaard ◽  
Per Höllsberg

ABSTRACT We studied the interactions between human herpesvirus 6B (HHV-6B) and its host cell. Productive infections of T-cell lines led to G1/S- and G2/M-phase arrest in the cell cycle concomitant with an increased level and enhanced DNA-binding activity of p53. More than 70% of HHV-6B-infected cells did not bind annexin V, indicating that the majority of cells were not undergoing apoptosis. HHV-6B infection induced Ser20 and Ser15 phosphorylation on p53, and the latter was inhibited by caffeine, an ataxia telangiectasia mutated kinase inhibitor. Thus, a productive HHV-6B infection suppresses T-cell proliferation concomitant with the phosphorylation and accumulation of p53.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5031
Author(s):  
Hyun-Su Lee ◽  
Gil-Saeng Jeong

The appropriate regulation of T cell activity under inflammatory conditions is crucial for maintaining immune homeostasis. Salinosporamide A discovered as a self-resistance product from the marine bacterium Salinospora tropica, has been used as a potent proteasome inhibitor (PI). Although PIs have been developed as novel therapeutics for autoimmune diseases, due to their immunosuppressive effect, whether salinosporamide A inhibits T cell activation remains unknown. The current study finds that salinosporamide A is not cytotoxic, but controls T cell proliferation. Results from our cell cycle arrest analysis revealed that salinosporamide A leads to cell cycle arrest and regulates the expression of cyclin-dependent kinases. Under activated conditions, salinosporamide A abrogated T cell activation by T cell receptor-mediated stimulation, in which the production of cytokines was inhibited by pretreatment with salinosporamide A. Furthermore, we demonstrated that the regulation of T cell activation by salinosporamide A is mediated by suppressing the MAPK pathway. Therefore, our results suggest that salinosporamide A effectively suppresses T cell activation through regulating T cell proliferation and the cell cycle and provides great insight into the development of novel therapeutics for autoimmune diseases or graft-versus-host disease.


Sign in / Sign up

Export Citation Format

Share Document