scholarly journals Induction of an Embryonic Mouse Innate Immune Response following Inoculation In Utero with Minute Virus of Mice

2014 ◽  
Vol 89 (4) ◽  
pp. 2182-2191 ◽  
Author(s):  
Irina Rostovsky ◽  
Claytus Davis

ABSTRACTWe used an embryonic-infection model system to show that MVMp, the prototypic minute virus of mice (MVM) serotype and a member of the genusProtoparvovirus, triggers a comprehensive innate immune response in the developing mouse embryo. Direct inoculation of the midtrimester embryoin uterowith MVMp results in a widespread, productive infection. During a 96-h infection course, embryonic beta interferon (IFN-β) and IFN-γ transcription were induced 90- and 60-fold, respectively. IFN-β levels correlated with the embryo viral burden, while IFN-γ levels first increased and then decreased. Production of proinflammatory cytokines, interleukin 1β (IL-1β) and tumor necrosis factor alpha (TNF-α), also increased, but by smaller amounts, approximately 7-fold each. We observed increased levels of downstream antiviral effector molecules, PKR and phosphorylated STAT2. Finally, we showed that there is an immune cell response to the virus infection. Infected tissues in the embryo exhibited an increased density of mature leukocytes compared to the same tissues in uninfected embryos. The responses we observed were almost completely restricted to the infected embryos. Uninfected littermates routinely exhibited small increases in innate immune components that rarely reached statistical significance compared to negative controls. Similarly, the placentae of infected embryos did not show any significant increase in transcription of innate immune cytokines. Since the placenta has both embryonic and maternal components, we suggest there is minimal involvement of the dam in the response to infection.IMPORTANCEInteraction between the small single-stranded vertebrate DNA viruses, the protoparvoviruses, and the host innate immune system has been unclear. The issue is important practically given the potential use of these viruses as oncotherapeutic agents. The data reported here stand in contrast to studies of innate immune response during protoparvovirus infection of adult hosts, which invariably reported no or minimal and sporadic induction of an interferon response during infection. We conclude that under conditions of robust and productive MVM infection, a normal murine host is able to mount a significant and broad innate immune response.

Author(s):  
Dalia Cicily Kattiparambil Dixon ◽  
Chameli Ratan ◽  
Bhagyalakshmi Nair ◽  
Sabitha Mangalath ◽  
Rachy Abraham ◽  
...  

: Innate immunity is the first line of defence elicited by the host immune system to fight against invading pathogens such as viruses and bacteria. From this elementary immune response, the more complex antigen-specific adaptive responses are recruited to provide a long-lasting memory against the pathogens. Innate immunity gets activated when the host cell utilizes a diverse set of receptors known as pattern recognition receptors (PRR) to recognize the viruses that have penetrated the host and respond with cellular processes like complement system, phagocytosis, cytokine release and inflammation and destruction of NK cells. Viral RNA or DNA or viral intermediate products are recognized by receptors like toll-like receptors(TLRs), nucleotide oligomerization domain(NOD)-like receptors (NLRs) and retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) thereby, inducing type I interferon response (IFN) and other proinflammatory cytokines in infected cells or other immune cells. But certain viruses can evade the host innate immune response to replicate efficiently, triggering the spread of the viral infection. The present review describes the similarity in the mechanism chosen by viruses from different families -HIV, SARS-CoV2 and Nipah viruses to evade the innate immune response and how efficiently they establish the infection in the host. The review also addresses the stages of developments of various vaccines against these viral diseases and the challenges encountered by the researchers during vaccine development.


2020 ◽  
Vol 98 (12) ◽  
Author(s):  
Jay S Johnson ◽  
Jacob M Maskal ◽  
Alan W Duttlinger ◽  
Kouassi R Kpodo ◽  
Betty R McConn ◽  
...  

Abstract The effects of in utero heat stress (IUHS) range from decreased growth performance to altered behavior, but the long-term impact of IUHS on postnatal innate immune function in pigs is unknown. Therefore, the study objective was to determine the effects of early gestation IUHS on the immune, metabolic, and stress response of pigs subjected to an 8 hr lipopolysaccharide (LPS) challenge during postnatal life. Twenty-four pregnant gilts were exposed to thermoneutral (TN; n = 12; 17.5 ± 2.1 °C) or heat stress (HS; n = 12; cyclic 26 to 36 °C) conditions from days 6 to 59 of gestation, and then TN conditions (20.9 ± 2.3 °C) from day 60 of gestation to farrowing. At 12 wk of age, 16 IUHS and 16 in utero thermoneutral (IUTN) pigs were selected, balanced by sex and given an intravenous injection of LPS (2 µg/kg BW mixed with sterile saline [SAL] and injected at 2 µL/kg BW) or SAL (2 µL/kg BW). Body temperature was monitored every 30 min, and blood was obtained at 0, 1, 2, 3, 4, 6, and 8 hr following the LPS challenge. Blood samples were analyzed for glucose, insulin, non-esterified fatty acids (NEFA), cortisol, and cytokine concentrations. In addition, white blood cell counts were determined at 0 and 4 hr. Hour 0 data were used as covariates. Body temperature was increased (P < 0.01) in LPS (40.88 ± 0.08 °C) vs. SAL (39.83 ± 0.08 °C) pigs. Eosinophils tended to be decreased overall (P = 0.09; 43.9%) in IUHS vs. IUTN pigs. Glucose concentrations were reduced overall (P = 0.05; 5.9%) in IUHS vs. IUTN pigs. The NEFA concentrations tended to be greater (P = 0.07; 143.4%) in IUHS-LPS pigs compared with all other treatments, and IUTN-LPS pigs tended to have greater (127.4%) circulating NEFA concentrations compared with IUTN-SAL and IUHS-SAL pigs. Cortisol was increased (P = 0.04) in IUHS-LPS compared with IUTN-LPS pigs at 3 hr (21.5%) and 4 hr (64.3%). At 1 hr, tumor necrosis factor α was increased (P = 0.01; 115.1%) in IUHS-LPS compared with IUTN-LPS pigs. Overall, interleukin-1β (IL-1β) and interleukin-6 (IL-6) were greater (P < 0.04; 281.3% and 297.8%, respectively) in IUHS-LPS pigs compared with all other treatments, and IUTN-LPS pigs had increased IL-1β and IL-6 concentrations compared with IUTN-SAL and IUHS-SAL pigs. In summary, IUHS altered the postnatal cytokine, metabolic, and physiological stress response of pigs during postnatal life, which may have negative implications toward the innate immune response of IUHS pigs to pathogens.


2020 ◽  
Vol 8 (4) ◽  
pp. 479
Author(s):  
Valeria Garcia-Castillo ◽  
Guillermo Marcial ◽  
Leonardo Albarracín ◽  
Mikado Tomokiyo ◽  
Patricia Clua ◽  
...  

Lactobacillus fermentum UCO-979C (Lf979C) beneficially modulates the cytokine response of gastric epithelial cells and macrophages after Helicobacter pylori infection in vitro. Nevertheless, no in vivo studies were performed with this strain to confirm its beneficial immunomodulatory effects. This work evaluated whether Lf979C improves protection against H. pylori infection in mice by modulating the innate immune response. In addition, we evaluated whether its exopolysaccharide (EPS) was involved in its beneficial effects. Lf979C significantly reduced TNF-α, IL-8, and MCP-1 and augmented IFN-γ and IL-10 in the gastric mucosa of H. pylori-infected mice. The differential cytokine profile induced by Lf979C in H. pylori-infected mice correlated with an improved reduction in the pathogen gastric colonization and protection against inflammatory damage. The purified EPS of Lf979C reduced IL-8 and enhanced IL-10 levels in the gastric mucosa of infected mice, while no effect was observed for IFN-γ. This work demonstrates for the first time the in vivo ability of Lf979C to increase resistance against H. pylori infection by modulating the gastric innate immune response. In addition, we advanced knowledge of the mechanisms involved in the beneficial effects of Lf979C by demonstrating that its EPS is partially responsible for its immunomodulatory effect.


2017 ◽  
Vol 91 (8) ◽  
Author(s):  
Ivan V. Kuzmin ◽  
Toni M. Schwarz ◽  
Philipp A. Ilinykh ◽  
Ingo Jordan ◽  
Thomas G. Ksiazek ◽  
...  

ABSTRACT Marburg (MARV) and Ebola (EBOV) viruses are zoonotic pathogens that cause severe hemorrhagic fever in humans. The natural reservoir of MARV is the Egyptian rousette bat (Rousettus aegyptiacus); that of EBOV is unknown but believed to be another bat species. The Egyptian rousette develops subclinical productive infection with MARV but is refractory to EBOV. Interaction of filoviruses with hosts is greatly affected by the viral interferon (IFN)-inhibiting domains (IID). Our study was aimed at characterization of innate immune responses to filoviruses and the role of filovirus IID in bat and human cells. The study demonstrated that EBOV and MARV replicate to similar levels in all tested cell lines, indicating that permissiveness for EBOV at cell and organism levels do not necessarily correlate. Filoviruses, particularly MARV, induced a potent innate immune response in rousette cells, which was generally stronger than that in human cells. Both EBOV VP35 and VP24 IID were found to suppress the innate immune response in rousette cells, but only VP35 IID appeared to promote virus replication. Along with IFN-α and IFN-β, IFN-γ was demonstrated to control filovirus infection in bat cells but not in human cells, suggesting host species specificity of the antiviral effect. The antiviral effects of bat IFNs appeared not to correlate with induction of IFN-stimulated genes 54 and 56, which were detected in human cells ectopically expressing bat IFN-α and IFN-β. As bat IFN-γ induced the type I IFN pathway, its antiviral effect is likely to be partially induced via cross talk. IMPORTANCE Bats serve as reservoirs for multiple emerging viruses, including filoviruses, henipaviruses, lyssaviruses, and zoonotic coronaviruses. Although there is no evidence for symptomatic disease caused by either Marburg or Ebola viruses in bats, spillover of these viruses into human populations causes deadly outbreaks. The reason for the lack of symptomatic disease in bats infected with filoviruses remains unknown. The outcome of a virus-host interaction depends on the ability of the host immune system to suppress viral replication and the ability of a virus to counteract the host defenses. Our study is a comparative analysis of the host innate immune response to either MARV or EBOV infection in bat and human cells and the role of viral interferon-inhibiting domains in the host innate immune responses. The data are useful for understanding the interactions of filoviruses with natural and accidental hosts and for identification of factors that influence filovirus evolution.


2021 ◽  
Vol 29 (3) ◽  
pp. 255-269
Author(s):  
Adina Huțanu ◽  
Anca Meda Georgescu ◽  
Akos Vince Andrejkovits ◽  
William Au ◽  
Minodora Dobreanu

Abstract The innate immune system is mandatory for the activation of antiviral host defense and eradication of the infection. In this regard, dendritic cells, natural killer cells, macrophages, neutrophils representing the cellular component, and cytokines, interferons, complement or Toll-Like Receptors, representing the mediators of unspecific response act together for both activation of the adaptive immune response and viral clearance. Of great importance is the proper functioning of the innate immune response from the very beginning. For instance, in the early stages of viral infection, the defective interferon response leads to uncontrolled viral replication and pathogen evasion, while hypersecretion during the later stages of infection generates hyperinflammation. This cascade activation of systemic inflammation culminates with cytokine storm syndrome and hypercoagulability state, due to a close interconnection between them. Thus an unbalanced reaction, either under- or over- stimulation of the innate immune system will lead to an uncoordinated response and unfavorable disease outcomes. Since both cellular and humoral factors are involved in the time-course of the innate immune response, in this review we aimed to address their gradual involvement in the antiviral response with emphasis on key steps in SARS-CoV-2 infection.


Pathogens ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 83 ◽  
Author(s):  
Delphine Lanoie ◽  
Simon Boudreault ◽  
Martin Bisaillon ◽  
Guy Lemay

As with most viruses, mammalian reovirus can be recognized and attacked by the host-cell interferon response network. Similarly, many viruses have developed resistance mechanisms to counteract the host-cell response at different points of this response. Reflecting the complexity of the interferon signaling pathways as well as the resulting antiviral response, viruses can—and often have—evolved many determinants to interfere with this innate immune response and allow viral replication. In the last few years, it has been evidenced that mammalian reovirus encodes many different determinants that are involved in regulating the induction of the interferon response or in interfering with the action of interferon-stimulated gene products. In this brief review, we present our current understanding of the different reovirus proteins known to be involved, introduce their postulated modes of action, and raise current questions that may lead to further investigations.


mBio ◽  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Sara Botto ◽  
Jinu Abraham ◽  
Nobuyo Mizuno ◽  
Kara Pryke ◽  
Bryan Gall ◽  
...  

ABSTRACTSecretion of interleukin-1β (IL-1β) represents a fundamental innate immune response to microbial infection that, at the molecular level, occurs following activation of proteolytic caspases that cleave the immature protein into a secretable form. Human cytomegalovirus (HCMV) is the archetypal betaherpesvirus that is invariably capable of lifelong infection through the activity of numerous virally encoded immune evasion phenotypes. Innate immune pathways responsive to cytoplasmic double-stranded DNA (dsDNA) are known to be activated in response to contact between HCMV and host cells. Here, we used clustered regularly interspaced short palindromic repeat (CRISPR)–CRISPR-associated protein 9 (Cas9) genome editing to demonstrate that the dsDNA receptorabsentinmelanoma 2 (AIM2) is required for secretion of IL-1β following HCMV infection. Furthermore, dsDNA-responsive innate signaling induced by HCMV infection that leads to activation of the type I interferon response is also shown, unexpectedly, to play a contributory role in IL-1β secretion. Importantly, we also show that rendering virus particles inactive by UV exposure leads to substantially increased IL-1β processing and secretion and that live HCMV can inhibit this, suggesting the virus encodes factors that confer an inhibitory effect on this response. Further examination revealed that ectopic expression of the immediate early (IE) 86-kDa protein (IE86) is actually associated with a block in transcription of the pro-IL-1β gene and, independently, diminishment of the immature protein. Overall, these results reveal two new and distinct phenotypes conferred by the HCMV IE86 protein, as well as an unusual circumstance in which a single herpesviral protein exhibits inhibitory effects on multiple molecular processes within the same innate immune response.IMPORTANCEPersistent infection with HCMV is associated with the operation of diverse evasion phenotypes directed at antiviral immunity. Obstruction of intrinsic and innate immune responses is typically conferred by viral proteins either associated with the viral particle or expressed immediately after entry. In line with this, numerous phenotypes are attributed to the HCMV IE86 protein that involve interference with innate immune processes via transcriptional and protein-directed mechanisms. We describe novel IE86-mediated phenotypes aimed at virus-induced secretion of IL-1β. Intriguingly, while many viruses target the function of the molecular scaffold required for IL-1β maturation to prevent this response, we find that HCMV and IE86 target the IL-1β protein specifically. Moreover, we show that IE86 impairs both the synthesis of the IL-1β transcript and the stability of the immature protein. This indicates an unusual phenomenon in which a single viral protein exhibits two molecularly separate evasion phenotypes directed at a single innate cytokine.


2016 ◽  
Vol 114 (1) ◽  
pp. E95-E104 ◽  
Author(s):  
Eugene Drokhlyansky ◽  
Didem Göz Aytürk ◽  
Timothy K. Soh ◽  
Ryan Chrenek ◽  
Elaine O’Loughlin ◽  
...  

The brain has a tightly regulated environment that protects neurons and limits inflammation, designated “immune privilege.” However, there is not an absolute lack of an immune response. We tested the ability of the brain to initiate an innate immune response to a virus, which was directly injected into the brain parenchyma, and to determine whether this response could limit viral spread. We injected vesicular stomatitis virus (VSV), a transsynaptic tracer, or naturally occurring VSV-derived defective interfering particles (DIPs), into the caudate–putamen (CP) and scored for an innate immune response and inhibition of virus spread. We found that the brain parenchyma has a functional type I interferon (IFN) response that can limit VSV spread at both the inoculation site and among synaptically connected neurons. Furthermore, we characterized the response of microglia to VSV infection and found that infected microglia produced type I IFN and uninfected microglia induced an innate immune response following virus injection.


Sign in / Sign up

Export Citation Format

Share Document