scholarly journals Readministration of Adenovirus Vector in Nonhuman Primate Lungs by Blockade of CD40-CD40 Ligand Interactions

2000 ◽  
Vol 74 (7) ◽  
pp. 3345-3352 ◽  
Author(s):  
Narendra Chirmule ◽  
Steven E. Raper ◽  
Linda Burkly ◽  
David Thomas ◽  
John Tazelaar ◽  
...  

ABSTRACT The interaction between CD40 on B cells and CD40 ligand (CD40L) on activated T cells is important for B-cell differentiation in T-cell-dependent humoral responses. We have extended our previous murine studies of CD40-CD40L in adenoviral vector-mediated immune responses to rhesus monkeys. Primary immune responses to adenoviral vectors and the ability to readminister vector were studied in rhesus monkeys in the presence or absence of a transient treatment with a humanized anti-CD40 ligand antibody (hu5C8). Adult animals were treated with hu5C8 at the time vector was instilled into the lung. Immunological analyses demonstrated suppression of adenovirus-induced lymphoproliferation and cytokine responses (interleukin-2 [IL-2], gamma interferon, IL-4, and IL-10) in hu5C8-treated animals. Animals treated with hu5C8 secreted adenovirus-specific immunoglobulin M (IgM) levels comparable to control animals, but did not secrete IgA or develop neutralizing antibodies; consequently, the animals could be readministered with adenovirus vector expressing alkaline phosphatase. A second study was designed to examine the long-term effects on immune functions of a short course of hu5C8. Acute hu5C8 treatment resulted in significant and prolonged inhibition of the adenovirus-specific humoral response well beyond the time hu5C8 effects were no longer significant. These studies demonstrate the potential of hu5C8 as an immunomodulatory regimen to enable administration of adenoviral vectors, and they advocate testing this model in humans.

2008 ◽  
Vol 82 (8) ◽  
pp. 3822-3833 ◽  
Author(s):  
S. Sridhar ◽  
A. Reyes-Sandoval ◽  
S. J. Draper ◽  
A. C. Moore ◽  
S. C. Gilbert ◽  
...  

ABSTRACT Human adenovirus serotype 5 (AdH5) vector vaccines elicit strong immune responses to the encoded antigen and have been used in various disease models. We designed AdH5 vectors expressing antigen under the control of a human cytomegalovirus (HCMV) immediate-early promoter containing its intron A sequence. The transcriptional levels of antigen and immune responses to antigen for vectors with the HCMV promoter with the intron A sequence (LP) were greater than those for AdH5 vectors using the HCMV promoter sequence without intron A (SP). We compared an E1E3-deleted AdH5 adenoviral vector, which affords more space for insertion of foreign sequences, and showed it to be as immunogenic as an E1-deleted AdH5 vector. Neutralizing antibodies to AdH5 limit the efficacy of vaccines based on the AdH5 serotype, and simian adenoviral vectors offer an attractive option to overcome this problem. We constructed E1E3-deleted human and simian adenoviral vectors encoding the pre-erythrocytic-stage malarial antigen Plasmodium berghei circumsporozoite protein. We compared the immunogenicity and efficacy of AdC6, a recombinant simian adenovirus serotype 6 vector, in a murine malaria model to those of AdH5 and the poxviral vectors MVA and FP9. AdC6 induced sterile protection from a single dose in 90% of mice, in contrast to AdH5 (25%) and poxviral vectors MVA and FP9 (0%). Adenoviral vectors maintained potent CD8+ T-cell responses for a longer period after immunization than did poxviral vectors and mainly induced an effector memory phenotype of cells. Significantly, AdC6 was able to maintain protection in the presence of preexisting immunity to AdH5.


2008 ◽  
Vol 82 (10) ◽  
pp. 4844-4852 ◽  
Author(s):  
Jinyan Liu ◽  
Bonnie A. Ewald ◽  
Diana M. Lynch ◽  
Matthew Denholtz ◽  
Peter Abbink ◽  
...  

ABSTRACT Recombinant adenovirus serotype 5 (rAd5) vaccine vectors for human immunodeficiency virus type 1 (HIV-1) and other pathogens have been shown to elicit antigen-specific cellular immune responses. Rare serotype rAd vectors have also been constructed to circumvent preexisting anti-Ad5 immunity and to facilitate the development of novel heterologous rAd prime-boost regimens. Here we show that rAd5, rAd26, and rAd48 vectors elicit qualitatively distinct phenotypes of cellular immune responses in rhesus monkeys and can be combined as potent heterologous prime-boost vaccine regimens. While rAd5-Gag induced primarily gamma interferon-positive (IFN-γ+) and IFN-γ+/tumor necrosis factor alpha+ (TNF-α+) T-lymphocyte responses, rAd26-Gag and rAd48-Gag induced higher proportions of interleukin-2+ (IL-2+) and polyfunctional IFN-γ+/TNF-α+/IL-2+ T-lymphocyte responses. Priming with the rare serotype rAd vectors proved remarkably effective for subsequent boosting with rAd5 vectors. These data demonstrate that the rare serotype rAd vectors elicited T-lymphocyte responses that were phenotypically distinct from those elicited by rAd5 vectors and suggest the functional relevance of polyfunctional CD8+ and CD4+ T-lymphocyte responses. Moreover, qualitative differences in cellular immune responses may prove critical in determining the overall potency of heterologous rAd prime-boost regimens.


2003 ◽  
Vol 77 (11) ◽  
pp. 6305-6313 ◽  
Author(s):  
Danilo R. Casimiro ◽  
Ling Chen ◽  
Tong-Ming Fu ◽  
Robert K. Evans ◽  
Michael J. Caulfield ◽  
...  

ABSTRACT Cellular immune responses, particularly those associated with CD3+ CD8+ cytotoxic T lymphocytes (CTL), play a primary role in controlling viral infection, including persistent infection with human immunodeficiency virus type 1 (HIV-1). Accordingly, recent HIV-1 vaccine research efforts have focused on establishing the optimal means of eliciting such antiviral CTL immune responses. We evaluated several DNA vaccine formulations, a modified vaccinia virus Ankara vector, and a replication-defective adenovirus serotype 5 (Ad5) vector, each expressing the same codon-optimized HIV-1 gag gene for immunogenicity in rhesus monkeys. The DNA vaccines were formulated with and without one of two chemical adjuvants (aluminum phosphate and CRL1005). The Ad5-gag vector was the most effective in eliciting anti-Gag CTL. The vaccine produced both CD4+ and CD8+ T-cell responses, with the latter consistently being the dominant component. To determine the effect of existing antiadenovirus immunity on Ad5-gag-induced immune responses, monkeys were exposed to adenovirus subtype 5 that did not encode antigen prior to immunization with Ad5-gag. The resulting anti-Gag T-cell responses were attenuated but not abolished. Regimens that involved priming with different DNA vaccine formulations followed by boosting with the adenovirus vector were also compared. Of the formulations tested, the DNA-CRL1005 vaccine primed T-cell responses most effectively and provided the best overall immune responses after boosting with Ad5-gag. These results are suggestive of an immunization strategy for humans that are centered on use of the adenovirus vector and in which existing adenovirus immunity may be overcome by combined immunization with adjuvanted DNA and adenovirus vector boosting.


2022 ◽  
Vol 12 ◽  
Author(s):  
Levi A. Tamming ◽  
Diana Duque ◽  
Anh Tran ◽  
Wanyue Zhang ◽  
Annabelle Pfeifle ◽  
...  

SARS-CoV-2 infections present a tremendous threat to public health. Safe and efficacious vaccines are the most effective means in preventing the infections. A variety of vaccines have demonstrated excellent efficacy and safety around the globe. Yet, development of alternative forms of vaccines remains beneficial, particularly those with simpler production processes, less stringent storage conditions, and the capability of being used in heterologous prime/boost regimens which have shown improved efficacy against many diseases. Here we reported a novel DNA vaccine comprised of the SARS-CoV-2 spike protein fused with CD40 ligand (CD40L) serving as both a targeting ligand and molecular adjuvant. A single intramuscular injection in Syrian hamsters induced significant neutralizing antibodies 3-weeks after vaccination, with a boost substantially improving immune responses. Moreover, the vaccine also reduced weight loss and suppressed viral replication in the lungs and nasal turbinates of challenged animals. Finally, the incorporation of CD40L into the DNA vaccine was shown to reduce lung pathology more effectively than the DNA vaccine devoid of CD40L. These results collectively indicate that this DNA vaccine candidate could be further explored because of its efficacy and known safety profile.


2001 ◽  
Vol 75 (11) ◽  
pp. 5222-5229 ◽  
Author(s):  
Philip W. Zoltick ◽  
Narendra Chirmule ◽  
Michael A. Schnell ◽  
Guang-ping Gao ◽  
Joseph V. Hughes ◽  
...  

ABSTRACT Adenovirus vectors have been studied as vehicles for gene transfer to skeletal muscle, an attractive target for gene therapies for inherited and acquired diseases. In this setting, immune responses to viral proteins and/or transgene products cause inflammation and lead to loss of transgene expression. A few studies in murine models have suggested that the destructive cell-mediated immune response to virally encoded proteins of E1-deleted adenovirus may not contribute to the elimination of transgene-expressing cells. However, the impact of immune responses following intramuscular administration of adenovirus vectors on transgene stability has not been elucidated in larger animal models such as nonhuman primates. Here we demonstrate that intramuscular administration of E1-deleted adenovirus vector expressing rhesus monkey erythropoietin or growth hormone to rhesus monkeys results in generation of a Th1-dependent cytotoxic T-cell response to adenovirus proteins. Transgene expression dropped significantly over time but was still detectable in some animals after 6 months. Systemic levels of adenovirus-specific neutralizing antibodies were generated, which blocked vector readministration. These studies indicate that the cellular and humoral immune response generated to adenovirus proteins, in the context of transgenes encoding self-proteins, hinders long-term transgene expression and readministration with first-generation vectors.


2002 ◽  
Vol 76 (11) ◽  
pp. 5711-5719 ◽  
Author(s):  
Andrei N. Varnavski ◽  
Yi Zhang ◽  
Michael Schnell ◽  
John Tazelaar ◽  
Jean-Pierre Louboutin ◽  
...  

ABSTRACT In an earlier study we evaluated innate immune responses to a first-generation adenoviral vector infused into the portal vein of rhesus monkeys who had never been exposed to adenovirus previously. In these animals, the systemic administration of E1/E3-deleted adenoviral vectors resulted in immediate activation of innate immunity and serious toxicity caused by targeting of vector to antigen-presenting cells and systemic inflammation. We analyze here how these responses are affected by vector-specific preexisting immunity that was induced by intramuscular immunization 6 months prior to evaluation. Our results show that preexposure to the vector substantially diminishes the transgene expression in most tissues but has little effect on gene transfer. Significantly, preimmunization does not eliminate systemic vector-induced toxicity. These conclusions are based on the presence of clinical features of coagulopathy and elevated levels of proinflammatory cytokine interleukin-6 in the serum of animals treated with vector after intramuscular immunization. Furthermore, preexisting immunity appears to induce a vector-specific inhibitory effect on erythroid progenitor development in the bone marrow that is not found when naive animals are challenged with vector.


Blood ◽  
2007 ◽  
Vol 110 (6) ◽  
pp. 1916-1923 ◽  
Author(s):  
Nia Tatsis ◽  
Julie C. Fitzgerald ◽  
Arturo Reyes-Sandoval ◽  
Kimberly C. Harris-McCoy ◽  
Scott E. Hensley ◽  
...  

AbstractCD8+ T cell-numbers rapidly expand and then contract after exposure to their cognate antigen. Here we show that the sustained frequencies of transgene product-specific CD8+ T cells elicited by replication-defective adenovirus vectors are linked to persistence of low levels of transcriptionally active adenovirus vector genomes at the site of inoculation, in liver, and lymphatic tissues. Continuously produced small amounts of antigen maintain fully active effector CD8+ T cells, while also allowing for their differentiation into central memory cells. The long-term persistence of adenoviral vectors may be highly advantageous for their use as vaccines against pathogens for which T-cell–mediated protection requires both fully activated T cells for immediate control of virus-infected cells and central memory CD8+ T cells that, because of their higher proliferative capacity, may be suited best to eliminate cells infected by pathogens that escaped the initial wave of effector T cells.


2018 ◽  
Author(s):  
Marsha S. Russell ◽  
Abenaya Muralidharan ◽  
Louise Larocque ◽  
Jingxin Cao ◽  
Yvon Deschambault ◽  
...  

AbstractCotton rats are an important animal model to study infectious diseases. They have demonstrated higher susceptibility to a wider variety of human pathogens than other rodents and are also the animal model of choice for pre-clinical evaluations of some vaccine candidates. However, the genome of cotton rats remains to be fully sequenced, with much fewer genes cloned and characterised compared to other rodent species. Here we report the cloning and characterization of CD40 ligand, whose human and murine counterparts are known to be expressed on a range of cell types including activated T cells and B cells, dendritic cells, granulocytes, macrophages and platelets and exerts a broad array of immune responses. The cDNA for cotton rat CD40L we isolated is comprised of 1104 nucleotides with an open reading frame (ORF) of 783bp coding for a 260 amino acid protein. The recombinant cotton rat CD40L protein was recognized by an antibody against mouse CD40L. Moreover, it demonstrated functional activities on immature bone marrow dendritic cells by upregulating surface maturation markers (CD40, CD54, CD80, and CD86), and increasing IL-6 gene and protein expression. The availability of CD40L gene identity could greatly facilitate mechanistic research on pathogen-induced-immunopathogenesis and vaccine-elicited immune responses.


2006 ◽  
Vol 87 (9) ◽  
pp. 2477-2485 ◽  
Author(s):  
Soumitra Roy ◽  
Yan Zhi ◽  
Gary P. Kobinger ◽  
Joanita Figueredo ◽  
Roberto Calcedo ◽  
...  

Adenoviral vectors can be used to generate potent humoral and cellular immune responses to transgene products. Use of adenoviral vectors based on non-human isolates may allow for their utilization in populations harbouring neutralizing antibodies to common human serotypes. A vector chimera was constructed using simian adenovirus 22 (a serotype belonging to the species Human adenovirus E) and simian adenovirus 21 (a serotype belonging to the species Human adenovirus B) expressing the Ebola (Zaire) virus glycoprotein (Ad C5/C1-ZGP). This chimeric adenovirus vector was used as a model to test its efficacy as a genetic vaccine and comparisons were made to a vector based on the commonly used human adenovirus C serotype 5 (Adhu5-ZGP). Ebola glycoprotein-specific T- and B-cell responses were measured in B10BR mice vaccinated with either Adhu5-ZGP or Ad C5/C1-ZGP vectors. Both vectors resulted in Ebola glycoprotein-specific gamma interferon-expressing T cells, although the Ad C5/C1-ZGP vector appeared to induce lower frequencies with kinetics slower than those elicited by the Adhu5-ZGP vector. The total immunoglobulin G response to Ebola glycoprotein was similar in sera from mice vaccinated with either vector. Two rhesus macaques vaccinated with the Ad C5/C1-ZGP vector were found to mount T-cell and antibody responses to the Ebola glycoprotein. It was found that a single administration of the chimeric Ad C5/C1-ZGP vector protected mice against a lethal challenge with a mouse-adapted strain of the Ebola (Zaire) virus.


Sign in / Sign up

Export Citation Format

Share Document