scholarly journals Addition of Exogenous Protease Facilitates Reovirus Infection in Many Restrictive Cells

2002 ◽  
Vol 76 (15) ◽  
pp. 7430-7443 ◽  
Author(s):  
Joseph W. Golden ◽  
Jessica Linke ◽  
Stephen Schmechel ◽  
Kara Thoemke ◽  
Leslie A. Schiff

ABSTRACT Virion uncoating is a critical step in the life cycle of mammalian orthoreoviruses. In cell culture, and probably in extraintestinal tissues in vivo, reovirus virions undergo partial proteolysis within endosomal or/or lysosomal compartments. This process converts the virion into a form referred to as an intermediate subvirion particle (ISVP). In natural enteric reovirus infections, proteolytic uncoating takes place extracellularly within the intestinal lumen. The resultant proteolyzed particles, unlike intact virions, have the capacity to penetrate cell membranes and thereby gain access to cytoplasmic components required for viral gene expression. We hypothesized that the capacity of reovirus outer capsid proteins to be proteolyzed is a determinant of cellular host range. To investigate this hypothesis, we asked if the addition of protease to cell culture medium would expand the range of cultured mammalian cell lines that can be productively infected by reoviruses. We identified many transformed and nontransformed cell lines, as well as primary cells, that restrict viral infection. In several of these restrictive cells, virion uncoating is inefficient or blocked. Addition of proteases to the cell culture medium generates ISVP-like particles and promotes viral growth in nearly all cell lines tested. Interestingly, we found that some cell lines that restrict reovirus uncoating still express mature cathepsin L, a lysosomal protease required for virion disassembly in murine L929 cells. This finding suggests that factors in addition to cathepsin L are required for efficient intracellular proteolysis of reovirus virions. Our results demonstrate that virion uncoating is a critical determinant of reovirus cellular host range and that many cells which otherwise support productive reovirus infection cannot efficiently mediate this essential early step in the virus life cycle.

2021 ◽  
Vol 17 (4) ◽  
pp. e1008942
Author(s):  
James H. Joly ◽  
Brandon T. L. Chew ◽  
Nicholas A. Graham

The metabolic reprogramming of cancer cells creates metabolic vulnerabilities that can be therapeutically targeted. However, our understanding of metabolic dependencies and the pathway crosstalk that creates these vulnerabilities in cancer cells remains incomplete. Here, by integrating gene expression data with genetic loss-of-function and pharmacological screening data from hundreds of cancer cell lines, we identified metabolic vulnerabilities at the level of pathways rather than individual genes. This approach revealed that metabolic pathway dependencies are highly context-specific such that cancer cells are vulnerable to inhibition of one metabolic pathway only when activity of another metabolic pathway is altered. Notably, we also found that the no single metabolic pathway was universally essential, suggesting that cancer cells are not invariably dependent on any metabolic pathway. In addition, we confirmed that cell culture medium is a major confounding factor for the analysis of metabolic pathway vulnerabilities. Nevertheless, we found robust associations between metabolic pathway activity and sensitivity to clinically approved drugs that were independent of cell culture medium. Lastly, we used parallel integration of pharmacological and genetic dependency data to confidently identify metabolic pathway vulnerabilities. Taken together, this study serves as a comprehensive characterization of the landscape of metabolic pathway vulnerabilities in cancer cell lines.


2020 ◽  
Author(s):  
James H. Joly ◽  
Brandon T.L. Chew ◽  
Nicholas A. Graham

AbstractThe metabolic reprogramming of cancer cells creates metabolic vulnerabilities that can be therapeutically targeted. However, our understanding of metabolic dependencies and the pathway crosstalk that creates these vulnerabilities in cancer cells remains incomplete. Here, by integrating gene expression data with genetic loss-of-function and pharmacological screening data from hundreds of cancer cell lines, we identified metabolic vulnerabilities at the level of pathways rather than individual genes. This approach revealed that metabolic pathway dependencies are highly context-specific such cancer cells are vulnerable to inhibition of one metabolic pathway only when activity of another metabolic pathway is altered. Notably, we also found that the no single metabolic pathway was universally essential, suggesting that cancer cells are not invariably dependent on any metabolic pathway. In addition, we confirmed that cell culture medium is a major confounding factor for the analysis of metabolic pathway vulnerabilities. Nevertheless, we found robust associations between metabolic pathway activity and sensitivity to clinically approved drugs that were independent of cell culture medium. Lastly, we used parallel integration of pharmacological and genetic dependency data to confidently identify metabolic pathway vulnerabilities. Taken together, this study serves as a comprehensive characterization of the landscape of metabolic pathway vulnerabilities in cancer cell lines.


1997 ◽  
Vol 25 (3) ◽  
pp. 323-330 ◽  
Author(s):  
Gottfried Schmalz ◽  
Dorthe Arenholt-Bindslev ◽  
Silke Pfüller ◽  
Helmut Schweikl

The toxicity of dental alloys depends upon the quantity and chemical state of metal elements released from the alloy into the affected tissue. The purpose of the present study was to investigate the effects of various cell lines, various cell numbers, and various serum concentrations on the cytotoxicity of metal cations which are components of dental alloys. Aqueous salt solutions were tested on two continuous cell lines (L-929 mouse fibroblast-like cells and HaK hamster epithelial-like kidney cells) and on primary human gingival fibroblasts. The cell culture medium was routinely supplemented with 5% fetal calf serum. The influence of the serum concentration on the cytotoxic potencies of metal cations was investigated by increasing the concentration to 20% in one series of experiments with L-929 cells. Cell reactions were recorded with the MTT test after exposure for 24 hours. The rank order of the cytotoxicity of cations in L-929 cells (10,000 cells/well, 5% serum) from the most to the least toxic was: Ag+, Zn2+, Cd2+, Hg2+, Au3+, Pt4+, Co2+, Cu2+, Ni2+, Pd2+, Mn2+, Nb5+, Mo5+, Ga3+, Cr3+, In3+, Sn2+. A variation in cell number between 5000 and 10,000 cells/well did not influence the results. Furthermore, no differences were observed in the cytotoxic responses of the two continuous cell lines. Variation in the serum content of L-929 cell culture medium had no significant influence on the cytotoxicity of most metal cations, except for Nb5+, Ni2+, Sn2+. Primary human gingival fibroblasts showed the same rank order of toxicity as the continuous cell lines, but at higher concentrations of the test materials.


2019 ◽  
Vol 87 (11) ◽  
Author(s):  
Theodore E. Nash

ABSTRACT Giardia lamblia is usually cultured axenically in TYI-S-33, a complex medium which does not permit survival and growth of mammalian cells. Likewise, medium commonly used to maintain and grow mammalian cells does not support healthy trophozoite survival for more than a few hours. The inability to coculture trophozoites and epithelial cells under optimal conditions limits studies of their interactions as well as interpretation of results. Trophozoites of the WB isolate but not the GS isolate were repeatedly adapted to grow stably in long-term cocultures with Caco2, Cos7, and mouse tumor rectal (RIT) cell lines using hybridoma-screened Dulbecco’s modified Eagle’s medium and 10% fetal calf serum. Giardia did not grow in spent cell culture medium or when separated by a permeable membrane using transwell methodology. Giardia chronically cocultured with specific cell lines became adapted (conditioned). These Giardia cocultures grew better than nonconditioned trophozoites, and the cell lines differed in their ability to support trophozoite growth in the order of RIT > Cos7 > Caco2. Trophozoites conditioned on one cell line and then grown in the presence of a heterologous cell line changed their growth rate to that seen in conditioned Giardia from the heterologous cell line. Trophozoite survival required intimate contact with cells, suggesting that trophozoites obtain an essential nutrient or growth factor from mammalian cells. This may explain why Giardia trophozoites adhere to the small intestinal epithelium during human and animal infections. This coculture system will be useful to understand the complex interactions between the host cells and parasite.


2012 ◽  
Vol 65 (1) ◽  
pp. 135-143 ◽  
Author(s):  
Yasufumi Imamoto ◽  
Hisaya Tanaka ◽  
Ken Takahashi ◽  
Yoshinobu Konno ◽  
Toshiyuki Suzawa

2020 ◽  
Author(s):  
Federica Saponaro ◽  
Marco Borsò ◽  
Sara Verlotta ◽  
Lavinia Bandini ◽  
Alessandro Saba ◽  
...  

2013 ◽  
Vol 133 (5) ◽  
pp. 278-285
Author(s):  
Norimitsu Takamura ◽  
Douyan Wang ◽  
Takao Satoh ◽  
Takao Namihira ◽  
Hisato Saitoh ◽  
...  

2021 ◽  
Vol 12 ◽  
pp. 204173142110086
Author(s):  
Jun Yong Kim ◽  
Won-Kyu Rhim ◽  
Yong-In Yoo ◽  
Da-Seul Kim ◽  
Kyoung-Won Ko ◽  
...  

Exosomes derived from mesenchymal stem cells (MSCs) have been studied as vital components of regenerative medicine. Typically, various isolation methods of exosomes from cell culture medium have been developed to increase the isolation yield of exosomes. Moreover, the exosome-depletion process of serum has been considered to result in clinically active and highly purified exosomes from the cell culture medium. Our aim was to compare isolation methods, ultracentrifuge (UC)-based conventional method, and tangential flow filtration (TFF) system-based method for separation with high yield, and the bioactivity of the exosome according to the purity of MSC-derived exosome was determined by the ratio of Fetal bovine serum (FBS)-derived exosome to MSC-derived exosome depending on exosome depletion processes of FBS. The TFF-based isolation yield of exosome derived from human umbilical cord MSC (UCMSC) increased two orders (92.5 times) compared to UC-based isolation method. Moreover, by optimizing the process of depleting FBS-derived exosome, the purity of UCMSC-derived exosome, evaluated using the expression level of MSC exosome surface marker (CD73), was about 15.6 times enhanced and the concentration of low-density lipoprotein-cholesterol (LDL-c), known as impurities resulting from FBS, proved to be negligibly detected. The wound healing and angiogenic effects of highly purified UCMSC-derived exosomes were improved about 23.1% and 71.4%, respectively, with human coronary artery endothelial cells (HCAEC). It suggests that the defined MSC exosome with high yield and purity could increase regenerative activity.


Sign in / Sign up

Export Citation Format

Share Document