scholarly journals Identification of Population Bottlenecks and Colonization Factors during Assembly of Bacterial Communities within the Zebrafish Intestine

mBio ◽  
2015 ◽  
Vol 6 (6) ◽  
Author(s):  
W. Zac Stephens ◽  
Travis J. Wiles ◽  
Emily S. Martinez ◽  
Matthew Jemielita ◽  
Adam R. Burns ◽  
...  

ABSTRACTThe zebrafish,Danio rerio, is a powerful model for studying bacterial colonization of the vertebrate intestine, but the genes required by commensal bacteria to colonize the zebrafish gut have not yet been interrogated on a genome-wide level. Here we apply a high-throughput transposon mutagenesis screen toAeromonas veroniiHm21 andVibriosp. strain ZWU0020 during their colonization of the zebrafish intestine alone and in competition with each other, as well as in different colonization orders. We use these transposon-tagged libraries to track bacterial population sizes in different colonization regimes and to identify gene functions required during these processes. We show that intraspecific, but not interspecific, competition with a previously established bacterial population greatly reduces the ability of these two bacterial species to colonize. Further, using a simple binomial sampling model, we show that under conditions of interspecific competition, genes required for colonization cannot be identified because of the population bottleneck experienced by the second colonizer. When bacteria colonize the intestine alone or at the same time as the other species, we find shared suites of functional requirements for colonization by the two species, including a prominent role for chemotaxis and motility, regardless of the presence of another species.IMPORTANCEZebrafish larvae, which are amenable to large-scale gnotobiotic studies, comprehensive sampling of their intestinal microbiota, and live imaging, are an excellent model for investigations of vertebrate intestinal colonization dynamics. We sought to develop a mutagenesis and tagging system in order to understand bacterial population dynamics and functional requirements during colonization of the larval zebrafish intestine. We explored changes in bacterial colonization dynamics and functional requirements when bacteria colonize a bacterium-free intestine, one previously colonized by their own species, or one colonized previously or simultaneously with a different species. This work provides a framework for rapid identification of colonization factors important under different colonization conditions. Furthermore, we demonstrate that when colonizing bacterial populations are very small, this approach is not accurate because random sampling of the input pool is sufficient to explain the distribution of inserts recovered from bacteria that colonized the intestines.

Author(s):  
Héléna Cuny ◽  
Clément Offret ◽  
Amine M. Boukerb ◽  
Leila Parizadeh ◽  
Olivier Lesouhaitier ◽  
...  

Three bacterial strains, named hOe-66T, hOe-124 and hOe-125, were isolated from the haemolymph of different specimens of the flat oyster Ostrea edulis collected in Concarneau bay (Finistère, France). These strains were characterized by a polyphasic approach, including (i) whole genome analyses with 16S rRNA gene sequence alignment and pangenome analysis, determination of the G+C content, average nucleotide identity (ANI), and in silico DNA–DNA hybridization (isDDH), and (ii) fatty acid methyl ester and other phenotypic analyses. Strains hOe-66T, hOe-124 and hOe-125 were closely related to both type strains Pseudoalteromonas rhizosphaerae RA15T and Pseudoalteromonas neustonica PAMC 28425T with less than 93.3% ANI and 52.3% isDDH values. Regarding their phenotypic traits, the three strains were Gram-negative, 1–2 µm rod-shaped, aerobic, motile and non-spore-forming bacteria. Cells grew optimally at 25 °C in 2.5% NaCl and at 7–8 pH. The most abundant fatty acids were summed feature 3 (C16:1 ω7c/C16:1 ω6c), C16:0 and C17:1 ω8c. The strains carried a genome average size of 4.64 Mb and a G+C content of 40.28 mol%. The genetic and phenotypic results suggested that strains hOe-66T, hOe-124 and hOe-125 belong to a new species of the genus Pseudoalteromonas . In this context, we propose the name Pseudoalteromonas ostreae sp. nov. The type strain is hOe-66T (=CECT 30303T=CIP 111911T).


2018 ◽  
Vol 56 (10) ◽  
Author(s):  
David M. Jacobs ◽  
Heather M. Ochs-Balcom ◽  
Jiwei Zhao ◽  
Timothy F. Murphy ◽  
Sanjay Sethi

ABSTRACT Little is known about interactions between nontypeable Haemophilus influenzae, Moraxella catarrhalis, Streptococcus pneumoniae, and Pseudomonas aeruginosa in the lower respiratory tract in chronic obstructive pulmonary disease (COPD) patients. We characterized colonization by these four bacterial species, determined species-specific interactions, and estimated the effects of host factors on bacterial colonization among COPD patients. We conducted a prospective cohort study in veterans with COPD that involved monthly clinical assessment and sputum cultures with an average duration of follow-up of 4.5 years. Cultures were used for bacterial identification. We analyzed bacterial interactions using generalized linear mixed models after controlling for clinical and demographic variables. The outcomes of interest were the relationships between bacteria based on clinical status (stable or exacerbation). One hundred eighty-one participants completed a total of 8,843 clinic visits, 30.8% of which had at least one of the four bacteria isolated. H. influenzae was the most common bacterium isolated (14.4%), followed by P. aeruginosa (8.1%). In adjusted models, S. pneumoniae colonization was positively associated with H. influenzae colonization (odds ratio [OR], 2.79; 95% confidence interval [CI], 2.03 to 3.73). We identified negative associations between P. aeruginosa and H. influenzae (OR, 0.15; 95% CI, 0.10 to 0.22) and P. aeruginosa and M. catarrhalis (OR, 0.51; 95% CI, 0.35 to 0.75). Associations were similar during stable and exacerbation visits. Recent antimicrobial therapy was associated with a lower prevalence of S. pneumoniae, H. influenzae, and M. catarrhalis, but not P. aeruginosa. Our findings support the presence of specific interspecies interactions between common bacteria in the lower respiratory tracts of COPD patients. Further work is necessary to elucidate the mechanisms of these complex interactions that shift bacterial species.


2018 ◽  
Vol 84 (7) ◽  
Author(s):  
Qiang Li ◽  
Bingjian Zhang ◽  
Xiaoru Yang ◽  
Qinya Ge

ABSTRACTResearch on the microbial communities that colonize stone monuments may provide a new understanding of stone biodeterioration and microbe-induced carbonate precipitation. This work investigated the seasonal variation of microbial communities in 2016 and 2017, as well as its effects on stone monuments. We determined the bacterial and fungal compositions of 12 samples from four well-separated geographic locations by using 16S rRNA and internal transcribed spacer gene amplicon sequencing.Cyanobacteriaand Ascomycota were the predominant bacterial and fungal phyla, respectively, and differences in species abundance among our 12 samples and 2 years showed no consistent temporal or spatial trends. Alpha diversity, estimated by Shannon and Simpson indices, revealed that an increase or decrease in bacterial diversity corresponded to a decrease or increase in the fungal community from 2016 to 2017. Large-scale association analysis identified potential bacteria and fungi correlated with stone deterioration. Functional prediction revealed specific pathways and microbiota associated with stone deterioration. Moreover, a culture-dependent technique was used to identify microbial isolates involved in biodeterioration and carbonatogenesis; 64% of 85 bacterial isolates caused precipitation of carbonates in biomineralization assays. Imaging techniques including scanning electron microscopy with energy-dispersive spectroscopy, X-ray diffraction, and fluorescence imaging identified CaCO3crystals as calcite and vaterite. Although CaCO3precipitation induced by bacteria often has esthetically deleterious impacts on stone monuments, this process may potentially serve as a novel, environmentally friendly bacterial self-inoculation approach to the conservation of stone.IMPORTANCEComprehensive analyses of the microbiomes associated with the deterioration of stone monuments may contribute to the understanding of mechanisms of deterioration, as well as to the identification of potentially beneficial or undesirable microbial communities and their genomic pathways. In our study, we demonstrated thatCyanobacteriawas the predominant bacterial phylum and exhibited an increase from 2016 to 2017, whileProteobacteriashowed a decreasing trend. Apart from esthetic deterioration caused by cyanobacteria and fungi, white plaque, which is composed mainly of CaCO3and is probably induced byCrossiellaandCyanobacteria, was also considered to be another threat to stone monuments. We showed that there was no significant correlation between microbial population variation and geographic location. Specific functional genes and pathways were also enriched in particular bacterial species. The CaCO3precipitation induced by an indigenous community of carbonatogenic bacteria also provides a self-inoculation approach for the conservation of stone.


mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Adam M. Dinan ◽  
Pin Tong ◽  
Amanda J. Lohan ◽  
Kevin M. Conlon ◽  
Aleksandra A. Miranda-CasoLuengo ◽  
...  

ABSTRACT Related species are often used to understand the molecular underpinning of virulence through examination of a shared set of biological features attributable to a core genome of orthologous genes. An important but insufficiently studied issue, however, is the extent to which the regulatory architectures are similarly conserved. A small number of studies have compared the primary transcriptomes of different bacterial species, but few have compared closely related species with clearly divergent evolutionary histories. We addressed the impact of differing modes of evolution within the genus Mycobacterium through comparison of the primary transcriptome of M. marinum with that of a closely related lineage, M. bovis. Both are thought to have evolved from an ancestral generalist species, with M. bovis and other members of the M. tuberculosis complex having subsequently undergone downsizing of their genomes during the transition to obligate pathogenicity. M. marinum, in contrast, has retained a large genome, appropriate for an environmental organism, and is a broad-host-range pathogen. We also examined changes over a shorter evolutionary time period through comparison of the primary transcriptome of M. bovis with that of another member of the M. tuberculosis complex (M. tuberculosis) which possesses an almost identical genome but maintains a distinct host preference. IMPORTANCE Our comparison of the transcriptional start site (TSS) maps of M. marinum and M. bovis uncovers a pillar of conserved promoters, noncoding RNA (NCRNA), and a genome-wide signal in the −35 promoter regions of both species. We identify evolutionarily conserved transcriptional attenuation and highlight its potential contribution to multidrug resistance mediated through the transcriptional regulator whiB7. We show that a species population history is reflected in its transcriptome and posit relaxed selection as the main driver of an abundance of canonical −10 promoter sites in M. bovis relative to M. marinum. It appears that transcriptome composition in mycobacteria is driven primarily by the availability of such sites and that their frequencies diverge significantly across the mycobacterial clade. Finally, through comparison of M. bovis and M. tuberculosis, we illustrate that single nucleotide polymorphism (SNP)-driven promoter differences likely underpin many of the transcriptional differences between M. tuberculosis complex lineages.


mSystems ◽  
2018 ◽  
Vol 3 (6) ◽  
Author(s):  
Irina M. Velsko ◽  
Brinta Chakraborty ◽  
Marcelle M. Nascimento ◽  
Robert A. Burne ◽  
Vincent P. Richards

ABSTRACTHealth-associated oralStreptococcusspecies are promising probiotic candidates to protect against dental caries. Ammonia production through the arginine deiminase system (ADS), which can increase the pH of oral biofilms, and direct antagonism of caries-associated bacterial species are desirable properties for oral probiotic strains. ADS and antagonistic activities can vary dramatically among individuals, but the genetic basis for these differences is unknown. We sequenced whole genomes of a diverse set of clinical oralStreptococcusisolates and examined the genetic basis of variability in ADS and antagonistic activities. A total of 113 isolates were included and represented 10 species:Streptococcus australis, A12-like,S. cristatus,S. gordonii,S. intermedius,S. mitis,S. oralisincludingS. oralissubsp.dentisani,S. parasanguinis,S. salivarius, andS. sanguinis. Mean ADS activity and antagonism onStreptococcus mutansUA159 were measured for each isolate, and each isolate was whole genome shotgun sequenced on an Illumina MiSeq. Phylogenies were built of genes known to be involved in ADS activity and antagonism. Several approaches to correlate the pan-genome with phenotypes were performed. Phylogenies of genes previously identified in ADS activity and antagonism grouped isolates by species, but not by phenotype. A genome-wide association study (GWAS) identified additional genes potentially involved in ADS activity or antagonism across all the isolates we sequenced as well as within several species. Phenotypic heterogeneity in oral streptococci is not necessarily reflected by genotype and is not species specific. Probiotic strains must be carefully selected based on characterization of each strain and not based on inclusion within a certain species.IMPORTANCERepresentative type strains are commonly used to characterize bacterial species, yet species are phenotypically and genotypically heterogeneous. Conclusions about strain physiology and activity based on a single strain therefore may be inappropriate and misleading. When selecting strains for probiotic use, the assumption that all strains within a species share the same desired probiotic characteristics may result in selection of a strain that lacks the desired traits, and therefore makes a minimally effective or ineffective probiotic. Health-associated oral streptococci are promising candidates for anticaries probiotics, but strains need to be carefully selected based on observed phenotypes. We characterized the genotypes and anticaries phenotypes of strains from 10 species of oral streptococci and demonstrate poor correlation between genotype and phenotype across all species.


mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
J. L. López ◽  
M. J. Lozano ◽  
A. Lagares ◽  
M. L. Fabre ◽  
W. O. Draghi ◽  
...  

ABSTRACT Prokaryotes represent an ancestral lineage in the tree of life and constitute optimal resources for investigating the evolution of genomes in unicellular organisms. Many bacterial species possess multipartite genomes offering opportunities to study functional variations among replicons, how and where new genes integrate into a genome, and how genetic information within a lineage becomes encoded and evolves. To analyze these issues, we focused on the model soil bacterium Sinorhizobium meliloti, which harbors a chromosome, a chromid (pSymB), a megaplasmid (pSymA), and, in many strains, one or more accessory plasmids. The analysis of several genomes, together with 1.4 Mb of accessory plasmid DNA that we purified and sequenced, revealed clearly different functional profiles associated with each genomic entity. pSymA, in particular, exhibited remarkable interstrain variation and a high density of singletons (unique, exclusive genes) featuring functionalities and modal codon usages that were very similar to those of the plasmidome. All this evidence reinforces the idea of a close relationship between pSymA and the plasmidome. Correspondence analyses revealed that adaptation of codon usages to the translational machinery increased from plasmidome to pSymA to pSymB to chromosome, corresponding as such to the ancestry of each replicon in the lineage. We demonstrated that chromosomal core genes gradually adapted to the translational machinery, reminiscent of observations in several bacterial taxa for genes with high expression levels. Such findings indicate a previously undiscovered codon usage adaptation associated with the chromosomal core information that likely operates to improve bacterial fitness. We present a comprehensive model illustrating the central findings described here, discussed in the context of the changes occurring during the evolution of a multipartite prokaryote genome. IMPORTANCE Bacterial genomes usually include many thousands of genes which are expressed with diverse spatial-temporal patterns and intensities. A well-known evidence is that highly expressed genes, such as the ribosomal and other translation-related proteins (RTRPs), have accommodated their codon usage to optimize translation efficiency and accuracy. Using a bioinformatic approach, we identify core-genes sets with different ancestries, and demonstrate that selection processes that optimize codon usage are not restricted to RTRPs but extended at a genome-wide scale. Such findings highlight, for the first time, a previously undiscovered adaptation strategy associated with the chromosomal-core information. Contrasted with the translationally more adapted genes, singletons (i.e., exclusive genes, including those of the plasmidome) appear as the gene pool with the less-ameliorated codon usage in the lineage. A comprehensive summary describing the inter- and intra-replicon heterogeneity of codon usages in a complex prokaryote genome is presented.


2019 ◽  
Vol 201 (18) ◽  
Author(s):  
Nina I. Sulkowski ◽  
Gail G. Hardy ◽  
Yves V. Brun ◽  
Tanmay A. M. Bharat

ABSTRACTAdhesion allows microbes to colonize surfaces and is the first stage in biofilm formation. Stable attachment of the freshwater alphaproteobacteriumCaulobacter crescentusto surfaces requires an adhesive polysaccharide called holdfast, which is synthesized at a specific cell pole and ultimately found at the tip of cylindrical extensions of the cell envelope called stalks. Secretion and anchoring of holdfast to the cell surface are governed by proteins HfsDAB and HfaABD, respectively. The arrangement and organization of these proteins with respect to each other and the cell envelope, and the mechanism by which the holdfast is anchored on cells, are unknown. In this study, we have imaged a series ofC. crescentusmutants using electron cryotomography, revealing the architecture and arrangement of the molecular machinery involved in holdfast anchoring in cells. We found that the holdfast is anchored to cells by a defined complex made up of the HfaABD proteins and that the HfsDAB secretion proteins are essential for proper assembly and localization of the HfaABD anchor. Subtomogram averaging of cell stalk tips showed that the HfaABD complex spans the outer membrane. The anchor protein HfaB is the major component of the anchor complex located on the periplasmic side of the outer membrane, while HfaA and HfaD are located on the cell surface. HfaB is the critical component of the complex, without which no HfaABD complex was observed in cells. These results allow us to propose a working model of holdfast anchoring, laying the groundwork for further structural and cell biological investigations.IMPORTANCEAdhesion and biofilm formation are fundamental processes that accompany bacterial colonization of surfaces, which are of critical importance in many infections.Caulobacter crescentusbiofilm formation proceeds via irreversible adhesion mediated by a polar polysaccharide called holdfast. Mechanistic and structural details of how the holdfast is secreted and anchored on cells are still lacking. Here, we have assigned the location and described the arrangement of the holdfast anchor complex. This work increases our knowledge of the relatively underexplored field of polysaccharide-mediated adhesion by identifying structural elements that anchor polysaccharides to the cell envelope, which is important in a variety of bacterial species.


2014 ◽  
Vol 80 (6) ◽  
pp. 2021-2028 ◽  
Author(s):  
Nilusha Malmuthuge ◽  
Philip J. Griebel ◽  
Le Luo Guan

ABSTRACTBacterial colonization in the gastrointestinal tracts (GIT) of preweaned calves is very important, since it can influence early development and postweaning performance and health. This study investigated the composition of the bacteria along the GIT (rumen, jejunum, ileum, cecum, and colon) of preweaned bull calves (3 weeks old) using pyrosequencing to understand the segregation of bacteria between the mucosal surface and digesta. Phylogenetic analysis revealed that a total of 83 genera belonging to 13 phyla were distributed throughout the GIT of preweaned calves, with theFirmicutes,Bacteroidetes, andProteobacteriapredominating. Quantitative PCR (qPCR) analysis of selected abundant bacterial genera (Prevotella,Bacteroides,Lactobacillus, andFaecalibacterium) revealed that their prevalence was significantly different among the GIT regions and between mucosa- and digesta-associated communities. Rumens contained the most diverse bacterial population, consisting of 47 genera, including 16 rumen-specific genera, followed by the large intestine and then the small intestine. Bacterial species richness was higher at the mucosal surface than in the local digesta, with the exception of the rumen. The majority of bacteria found on the rumen epithelial surface and within the small intestine could not be identified due to a lack of known genus-level information. Thus, future studies will be required to fully characterize the microbiome during the development of the rumens and the mucosal immune systems of newborn calves. This is the first study to analyze in depth the bacterial composition of the GIT microbiome in preweaned calves, which extends previous findings regarding early rumen colonization and bacterial segregation between mucosa- and digesta-associated microbial communities.


2012 ◽  
Vol 78 (9) ◽  
pp. 3098-3107 ◽  
Author(s):  
Anita Khatiwara ◽  
Tieshan Jiang ◽  
Sam-Sun Sung ◽  
Turki Dawoud ◽  
Jeong Nam Kim ◽  
...  

ABSTRACTAs more whole-genome sequences become available, there is an increasing demand for high-throughput methods that link genes to phenotypes, facilitating discovery of new gene functions. In this study, we describe a new version of the Tn-seq method involving a modified EZ:Tn5transposon for genome-wide and quantitative mapping of all insertions in a complex mutant library utilizing massively parallel Illumina sequencing. This Tn-seq method was applied to a genome-saturatingSalmonella entericaserotype Typhimurium mutant library recovered from selection under 3 differentin vitrogrowth conditions (diluted Luria-Bertani [LB] medium, LB medium plus bile acid, and LB medium at 42°C), mimicking some aspects of host stressors. We identified an overlapping set of 105 protein-coding genes inS. Typhimurium that are conditionally essential under at least one of the above selective conditions. Competition assays using 4 deletion mutants (pyrD,glnL,recD, and STM14_5307) confirmed the phenotypes predicted by Tn-seq data, validating the utility of this approach in discovering new gene functions. With continuously increasing sequencing capacity of next generation sequencing technologies, this robust Tn-seq method will aid in revealing unexplored genetic determinants and the underlying mechanisms of various biological processes inSalmonellaand the other approximately 70 bacterial species for which EZ:Tn5mutagenesis has been established.


2020 ◽  
Vol 6 (10) ◽  
Author(s):  
Yuqing Feng ◽  
Xuezheng Fan ◽  
Liangquan Zhu ◽  
Xinyue Yang ◽  
Yan Liu ◽  
...  

Clostridium perfringens is associated with a variety of diseases in both humans and animals. Recent advances in genomic sequencing make it timely to re-visit this important pathogen. Although the genome sequence of C. perfringens was first determined in 2002, large-scale comparative genomics with isolates of different origins is still lacking. In this study, we used whole-genome sequencing of 45 C . perfringens isolates with isolation time spanning an 80‐year period and performed comparative analysis of 173 genomes from worldwide strains. We also conducted phylogenetic lineage analysis and introduced an openness index (OI) to evaluate the openness of bacterial genomes. We classified all these genomes into five lineages and hypothesized that the origin of C. perfringens dates back to ~80 000 years ago. We showed that the pangenome of the 173 C . perfringens strains contained a total of 26 954 genes, while the core genome comprised 1020 genes, accounting for about a third of the genome of each isolate. We demonstrated that C. perfringens had the highest OI compared with 51 other bacterial species. Intact prophage sequences were found in nearly 70.0 % of C. perfringens genomes, while CRISPR sequences were found only in ~40.0 %. Plasmids were prevalent in C. perfringens isolates, and half of the virulence genes and antibiotic resistance genes (ARGs) identified in all the isolates could be found in plasmids. ARG-sharing network analysis showed that C. perfringens shared its 11 ARGs with 55 different bacterial species, and a high frequency of ARG transfer may have occurred between C. perfringens and species in the genera Streptococcus and Staphylococcus . Correlation analysis showed that the ARG number in C. perfringens strains increased with time, while the virulence gene number was relative stable. Our results, taken together with previous studies, revealed the high genome openness and genetic diversity of C. perfringens and provide a comprehensive view of the phylogeny, genomic features, virulence gene and ARG profiles of worldwide strains.


Sign in / Sign up

Export Citation Format

Share Document