scholarly journals High-Resolution Transcriptomic Analysis of the Adaptive Response of Staphylococcus aureus during Acute and Chronic Phases of Osteomyelitis

mBio ◽  
2014 ◽  
Vol 5 (6) ◽  
Author(s):  
Anna K. Szafranska ◽  
Andrew P. A. Oxley ◽  
Diego Chaves-Moreno ◽  
Sarah A. Horst ◽  
Steffen Roßlenbroich ◽  
...  

ABSTRACTOsteomyelitis is a difficult-to-eradicate bone infection typically caused byStaphylococcus aureus. In this study, we investigated thein vivotranscriptional adaptation ofS. aureusduring bone infection. To this end, we determined the transcriptome ofS. aureusduring the acute (day 7) and chronic (day 28) phases of experimental murine osteomyelitis using RNA sequencing (RNA-Seq). We identified a total of 180 genes significantly more highly expressed byS. aureusduring acute or chronicin vivoinfection than underin vitrogrowth conditions. These genes encoded proteins involved in gluconeogenesis, proteolysis of host proteins, iron acquisition, evasion of host immune defenses, and stress responses. At the regulatory level,sarAand -RandsaeRand -Sas well as the small RNA RsaC were predominantly expressed byS. aureusduringin vivoinfection. Only nine genes, including the genes encoding the arginine deiminase (ADI) pathway and those involved in the stringent response, were significantly more highly expressed byS. aureusduring the chronic than the acute stage of infection. Analysis by quantitative reverse transcription-PCR (qRT-PCR) of a subset of thesein vivo-expressed genes in clinical specimens yielded the same results as those observed in the murine system. Collectively, our results show that during acute osteomyelitis,S. aureusinduced the transcription of genes that mediate metabolic adaptation, immune evasion, and replication. During the chronic phase, however,S. aureusswitched its transcriptional response from a proliferative to a persistence mode, probably driven by the severe deficiency in nutrient supplies. Interfering with the survival strategies ofS. aureusduring chronic infection could lead to more effective treatments.IMPORTANCEThe key to the survival success of pathogens during an infection is their capacity to rapidly adjust to the host environment and to evade the host defenses. Understanding how a pathogen redirects and fine-tunes its gene expression in response to the challenges of infection is central to the development of more efficient anti-infective therapies. Osteomyelitis is a debilitating infection of the bone predominantly caused byS. aureus. In this study, we evaluated the transcriptional response ofS. aureusduring bone infection. Our results indicate thatS. aureusreprograms its genetic repertoire during the acute phase of infection to adapt to nutrient availability and to replicate within the host. During the chronic phase,S. aureusupregulates a survival genetic program activated in response to nutrient starvation. Thus, we have uncovered key survival pathways ofS. aureusduring acute and chronic osteomyelitis that can be used as therapeutic targets.

2019 ◽  
Vol 202 (8) ◽  
Author(s):  
Courtney E. Price ◽  
Dustin G. Brown ◽  
Dominique H. Limoli ◽  
Vanessa V. Phelan ◽  
George A. O’Toole

ABSTRACT Cystic fibrosis (CF) patients chronically infected with both Pseudomonas aeruginosa and Staphylococcus aureus have worse health outcomes than patients who are monoinfected with either P. aeruginosa or S. aureus. We showed previously that mucoid strains of P. aeruginosa can coexist with S. aureus in vitro due to the transcriptional downregulation of several toxic exoproducts typically produced by P. aeruginosa, including siderophores, rhamnolipids, and HQNO (2-heptyl-4-hydroxyquinoline N-oxide). Here, we demonstrate that exogenous alginate protects S. aureus from P. aeruginosa in both planktonic and biofilm coculture models under a variety of nutritional conditions. S. aureus protection in the presence of exogenous alginate is due to the transcriptional downregulation of pvdA, a gene required for the production of the iron-scavenging siderophore pyoverdine as well as the downregulation of the PQS (Pseudomonas quinolone signal) (2-heptyl-3,4-dihydroxyquinoline) quorum sensing system. The impact of exogenous alginate is independent of endogenous alginate production. We further demonstrate that coculture of mucoid P. aeruginosa with nonmucoid P. aeruginosa strains can mitigate the killing of S. aureus by the nonmucoid strain of P. aeruginosa, indicating that the mechanism that we describe here may function in vivo in the context of mixed infections. Finally, we investigated a panel of mucoid clinical isolates that retain the ability to kill S. aureus at late time points and show that each strain has a unique expression profile, indicating that mucoid isolates can overcome the S. aureus-protective effects of mucoidy in a strain-specific manner. IMPORTANCE CF patients are chronically infected by polymicrobial communities. The two dominant bacterial pathogens that infect the lungs of CF patients are P. aeruginosa and S. aureus, with ∼30% of patients coinfected by both species. Such coinfected individuals have worse outcomes than monoinfected patients, and both species persist within the same physical space. A variety of host and environmental factors have been demonstrated to promote P. aeruginosa-S. aureus coexistence, despite evidence that P. aeruginosa kills S. aureus when these organisms are cocultured in vitro. Thus, a better understanding of P. aeruginosa-S. aureus interactions, particularly mechanisms by which these microorganisms are able to coexist in proximal physical space, will lead to better-informed treatments for chronic polymicrobial infections.


2015 ◽  
Vol 36 (6) ◽  
pp. 913-922 ◽  
Author(s):  
Nallani Vijay Kumar ◽  
Jianbo Yang ◽  
Jitesh K. Pillai ◽  
Swati Rawat ◽  
Carlos Solano ◽  
...  

The AP-1-like transcription factor Yap8 is critical for arsenic tolerance in the yeastSaccharomyces cerevisiae. However, the mechanism by which Yap8 senses the presence of arsenic and activates transcription of detoxification genes is unknown. Here we demonstrate that Yap8 directly binds to trivalent arsenite [As(III)]in vitroandin vivoand that approximately one As(III) molecule is bound per molecule of Yap8. As(III) is coordinated by three sulfur atoms in purified Yap8, and our genetic and biochemical data identify the cysteine residues that form the binding site as Cys132, Cys137, and Cys274. As(III) binding by Yap8 does not require an additional yeast protein, and Yap8 is regulated neither at the level of localization nor at the level of DNA binding. Instead, our data are consistent with a model in which a DNA-bound form of Yap8 acts directly as an As(III) sensor. Binding of As(III) to Yap8 triggers a conformational change that in turn brings about a transcriptional response. Thus, As(III) binding to Yap8 acts as a molecular switch that converts inactive Yap8 into an active transcriptional regulator. This is the first report to demonstrate how a eukaryotic protein couples arsenic sensing to transcriptional activation.


2013 ◽  
Vol 57 (9) ◽  
pp. 4470-4480 ◽  
Author(s):  
Min Jung Kwun ◽  
Gabriela Novotna ◽  
Andrew R. Hesketh ◽  
Lionel Hill ◽  
Hee-Jeon Hong

ABSTRACTVanRS two-component regulatory systems are key elements required for the transcriptional activation of inducible vancomycin resistance genes in bacteria, but the precise nature of the ligand signal that activates these systems has remained undefined. Using the resistance system inStreptomyces coelicoloras a model, we have undertaken a series ofin vivostudies which indicate that the VanS sensor kinase in VanB-type resistance systems is activated by vancomycin in complex with thed-alanyl-d-alanine (d-Ala-d-Ala) termini of cell wall peptidoglycan (PG) precursors. Complementation of an essentiald-Ala-d-Ala ligase activity by constitutive expression ofvanAencoding a bifunctionald-Ala-d-Ala andd-alanyl-d-lactate (d-Ala-d-Lac) ligase activity allowed construction of strains that synthesized variable amounts of PG precursors containingd-Ala-d-Ala. Assays quantifying the expression of genes under VanRS control showed that the response to vancomycin in these strains correlated with the abundance ofd-Ala-d-Ala-containing PG precursors; strains producing a lower proportion of PG precursors terminating ind-Ala-d-Ala consistently exhibited a lower response to vancomycin. Pretreatment of wild-type cells with vancomycin or teicoplanin to saturate and mask thed-Ala-d-Ala binding sites in nascent PG also blocked the transcriptional response to subsequent vancomycin exposure, and desleucyl vancomycin, a vancomycin analogue incapable of interacting withd-Ala-d-Ala residues, failed to inducevangene expression. Activation of resistance by a vancomycin–d-Ala-d-Ala PG complex predicts a limit to the proportion of PG that can be derived from precursors terminating ind-Ala-d-Lac, a restriction also enforced by the bifunctional activity of the VanA ligase.


2017 ◽  
Vol 61 (4) ◽  
Author(s):  
Vien T. M. Le ◽  
Hoan N. Le ◽  
Marcos Gabriel Pinheiro ◽  
Kenneth J. Hahn ◽  
Mary L. Dinh ◽  
...  

ABSTRACT The protective efficacy of tedizolid phosphate, a novel oxazolidinone that potently inhibits bacterial protein synthesis, was compared to those of linezolid, vancomycin, and saline in a rabbit model of Staphylococcus aureus necrotizing pneumonia. Tedizolid phosphate was administered to rabbits at 6 mg/kg of body weight intravenously twice daily, which yielded values of the 24-h area under the concentration-time curve approximating those found in humans. The overall survival rate was 83% for rabbits treated with 6 mg/kg tedizolid phosphate twice daily and 83% for those treated with 50 mg/kg linezolid thrice daily (P = 0.66 by the log-rank test versus the results obtained with tedizolid phosphate). These survival rates were significantly greater than the survival rates of 17% for rabbits treated with 30 mg/kg vancomycin twice daily (P = 0.003) and 17% for rabbits treated with saline (P = 0.002). The bacterial count in the lungs of rabbits treated with tedizolid phosphate was significantly decreased compared to that in the lungs of rabbits treated with saline, although it was not significantly different from that in the lungs of rabbits treated with vancomycin or linezolid. The in vivo bacterial production of alpha-toxin and Panton-Valentine leukocidin, two key S. aureus-secreted toxins that play critical roles in the pathogenesis of necrotizing pneumonia, in the lungs of rabbits treated with tedizolid phosphate and linezolid was significantly inhibited compared to that in the lungs of rabbits treated with vancomycin or saline. Taken together, these results indicate that tedizolid phosphate is superior to vancomycin for the treatment of S. aureus necrotizing pneumonia because it inhibits the bacterial production of lung-damaging toxins at the site of infection.


2021 ◽  
Vol 12 (3) ◽  
Author(s):  
Michael L. Kamradt ◽  
Ji-Ung Jung ◽  
Kathryn M. Pflug ◽  
Dong W. Lee ◽  
Victor Fanniel ◽  
...  

AbstractCancers, including glioblastoma multiforme (GBM), undergo coordinated reprogramming of metabolic pathways that control glycolysis and oxidative phosphorylation (OXPHOS) to promote tumor growth in diverse tumor microenvironments. Adaptation to limited nutrient availability in the microenvironment is associated with remodeling of mitochondrial morphology and bioenergetic capacity. We recently demonstrated that NF-κB-inducing kinase (NIK) regulates mitochondrial morphology to promote GBM cell invasion. Here, we show that NIK is recruited to the outer membrane of dividing mitochondria with the master fission regulator, Dynamin-related protein1 (DRP1). Moreover, glucose deprivation-mediated metabolic shift to OXPHOS increases fission and mitochondrial localization of both NIK and DRP1. NIK deficiency results in decreased mitochondrial respiration, ATP production, and spare respiratory capacity (SRC), a critical measure of mitochondrial fitness. Although IκB kinase α and β (IKKα/β) and NIK are required for OXPHOS in high glucose media, only NIK is required to increase SRC under glucose deprivation. Consistent with an IKK-independent role for NIK in regulating metabolism, we show that NIK phosphorylates DRP1-S616 in vitro and in vivo. Notably, a constitutively active DRP1-S616E mutant rescues oxidative metabolism, invasiveness, and tumorigenic potential in NIK−/− cells without inducing IKK. Thus, we establish that NIK is critical for bioenergetic stress responses to promote GBM cell pathogenesis independently of IKK. Our data suggest that targeting NIK may be used to exploit metabolic vulnerabilities and improve therapeutic strategies for GBM.


2015 ◽  
Vol 83 (9) ◽  
pp. 3445-3457 ◽  
Author(s):  
Kate M. O'Keeffe ◽  
Mieszko M. Wilk ◽  
John M. Leech ◽  
Alison G. Murphy ◽  
Maisem Laabei ◽  
...  

The capacity for intracellular survival within phagocytes is likely a critical factor facilitating the dissemination ofStaphylococcus aureusin the host. To date, the majority of work onS. aureus-phagocyte interactions has focused on neutrophils and, to a lesser extent, macrophages, yet we understand little about the role played by dendritic cells (DCs) in the direct killing of this bacterium. Using bone marrow-derived DCs (BMDCs), we demonstrate for the first time that DCs can effectively killS. aureusbut that certain strains ofS. aureushave the capacity to evade DC (and macrophage) killing by manipulation of autophagic pathways. Strains with high levels of Agr activity were capable of causing autophagosome accumulation, were not killed by BMDCs, and subsequently escaped from the phagocyte, exerting significant cytotoxic effects. Conversely, strains that exhibited low levels of Agr activity failed to accumulate autophagosomes and were killed by BMDCs. Inhibition of the autophagic pathway by treatment with 3-methyladenine restored the bactericidal effects of BMDCs. Using anin vivomodel of systemic infection, we demonstrated that the ability ofS. aureusstrains to evade phagocytic cell killing and to survive temporarily within phagocytes correlated with persistence in the periphery and that this effect is critically Agr dependent. Taken together, our data suggest that strains ofS. aureusexhibiting high levels of Agr activity are capable of blocking autophagic flux, leading to the accumulation of autophagosomes. Within these autophagosomes, the bacteria are protected from phagocytic killing, thus providing an intracellular survival niche within professional phagocytes, which ultimately facilitates dissemination.


2018 ◽  
Vol 87 (2) ◽  
Author(s):  
Kimberly L. James ◽  
Austin B. Mogen ◽  
Jessica N. Brandwein ◽  
Silvia S. Orsini ◽  
Miranda J. Ridder ◽  
...  

ABSTRACTStaphylococcus aureusnitric oxide synthase (saNOS) is a major contributor to virulence, stress resistance, and physiology, yet the specific mechanism(s) by which saNOS intersects with other known regulatory circuits is largely unknown. The SrrAB two-component system, which modulates gene expression in response to the reduced state of respiratory menaquinones, is a positive regulator ofnosexpression. Several SrrAB-regulated genes were also previously shown to be induced in an aerobically respiringnosmutant, suggesting a potential interplay between saNOS and SrrAB. Therefore, a combination of genetic, molecular, and physiological approaches was employed to characterize anos srrABmutant, which had significant reductions in the maximum specific growth rate and oxygen consumption when cultured under conditions promoting aerobic respiration. Thenos srrABmutant secreted elevated lactate levels, correlating with the increased transcription of lactate dehydrogenases. Expression of nitrate and nitrite reductase genes was also significantly enhanced in thenos srrABdouble mutant, and its aerobic growth defect could be partially rescued with supplementation with nitrate, nitrite, or ammonia. Furthermore, elevated ornithine and citrulline levels and highly upregulated expression of arginine deiminase genes were observed in the double mutant. These data suggest that a dual deficiency in saNOS and SrrAB limitsS. aureusto fermentative metabolism, with a reliance on nitrate assimilation and the urea cycle to help fuel energy production. Thenos,srrAB, andnos srrABmutants showed comparable defects in endothelial intracellular survival, whereas thesrrABandnos srrABmutants were highly attenuated during murine sepsis, suggesting that SrrAB-mediated metabolic versatility is dominantin vivo.


2014 ◽  
Vol 83 (3) ◽  
pp. 1019-1029 ◽  
Author(s):  
Julienne C. Kaiser ◽  
Sameha Omer ◽  
Jessica R. Sheldon ◽  
Ian Welch ◽  
David E. Heinrichs

The branched-chain amino acids (BCAAs; Ile, Leu, and Val) not only are important nutrients for the growth ofStaphylococcus aureusbut also are corepressors for CodY, which regulates virulence gene expression, implicating BCAAs as an important link between the metabolic state of the cell and virulence. BCAAs are either synthesized intracellularly or acquired from the environment.S. aureusencodes three putative BCAA transporters, designated BrnQ1, BrnQ2, and BrnQ3; their functions have not yet been formally tested. In this study, we mutated all threebrnQparalogs so as to characterize their substrate specificities and their roles in growthin vitroandin vivo. We demonstrated that in the community-associated, methicillin-resistantS. aureus(CA-MRSA) strain USA300, BrnQ1 is involved in uptake of all three BCAAs, BrnQ2 transports Ile, and BrnQ3 does not have a significant role in BCAA transport under the conditions tested. Of the three, only BrnQ1 is essential for USA300 to grow in a chemically defined medium that is limited for Leu or Val. Interestingly, we observed that abrnQ2mutant grew better than USA300 in media limited for Leu and Val, owing to the fact that this mutation leads to overexpression ofbrnQ1. In a murine infection model, thebrnQ1mutant was attenuated, but in contrast,brnQ2mutants had significantly increased virulence compared to that of USA300, a phenotype we suggest is at least partially linked to enhancedin vivoscavenging of Leu and Val through BrnQ1. These data uncover a hitherto-undiscovered connection between nutrient acquisition and virulence in CA-MRSA.


2017 ◽  
Vol 61 (6) ◽  
Author(s):  
Ximena Castañeda ◽  
Cristina García-de-la-Mària ◽  
Oriol Gasch ◽  
Juan M. Pericas ◽  
Yolanda Armero ◽  
...  

ABSTRACT The aim of this in vivo study was to compare the efficacy of vancomycin at standard doses (VAN-SD) to that of VAN at adjusted doses (VAN-AD) in achieving a VAN area under the curve/MIC ratio (AUC/MIC) of ≥400 against three methicillin-resistant Staphylococcus aureus (MRSA) strains with different microdilution VAN MICs in an experimental endocarditis model. The valve vegetation bacterial counts after 48 h of VAN therapy were compared, and no differences were observed between the two treatment groups for any of the three strains tested. Overall, for VAN-SD and VAN-AD, the rates of sterile vegetations were 15/45 (33.3%) and 21/49 (42.8%) (P = 0.343), while the medians (interquartile ranges [IQRs]) for log10 CFU/g of vegetation were 2 (0 to 6.9) and 2 (0 to 4.5) (P = 0.384), respectively. In conclusion, this VAN AUC/MIC pharmacodynamic target was not a good predictor of vancomycin efficacy in MRSA experimental endocarditis.


2011 ◽  
Vol 55 (11) ◽  
pp. 5325-5330 ◽  
Author(s):  
Yan Q. Xiong ◽  
Wessam Abdel Hady ◽  
Antoine Deslandes ◽  
Astrid Rey ◽  
Laurent Fraisse ◽  
...  

ABSTRACTCationic antimicrobial peptides (CAPs) play important roles in host immune defenses. Plectasin is a defensin-like CAP isolated from the saprophytic fungusPseudoplectania nigrella. NZ2114 is a novel variant of plectasin with potent activity against Gram-positive bacteria. In this study, we investigated (i) thein vivopharmacokinetic and pharmacodynamic (PK/PD) characteristics of NZ2114 and (ii) thein vivoefficacy of NZ2114 in comparison with those of two conventional antibiotics, vancomycin or daptomycin, in an experimental rabbit infective endocarditis (IE) model due to a methicillin-resistantStaphylococcus aureus(MRSA) strain (ATCC 33591). All NZ2114 regimens (5, 10, and 20 mg/kg of body weight, intravenously [i.v.], twice daily for 3 days) significantly decreased MRSA densities in cardiac vegetations, kidneys, and spleen versus those in untreated controls, except in one scenario (5 mg/kg, splenic MRSA counts). The efficacy of NZ2114 was clearly dose dependent in all target tissues. At 20 mg/kg, NZ2114 showed a significantly greater efficacy than vancomycin (P< 0.001) and an efficacy similar to that of daptomycin. Of importance, only NZ2114 (in 10- and 20-mg/kg regimens) prevented posttherapy relapse in cardiac vegetations, kidneys, and spleen, while bacterial counts in these target tissues continued to increase in vancomycin- and daptomycin-treated animals. Thesein vivoefficacies were equivalent and significantly correlated with three PK indices investigated:fCmax/MIC (the maximum concentration of the free, unbound fraction of a drug in serum divided by the MIC),fAUC/MIC (where AUC is the area under the concentration-time curve), andf%T>MIC(%T>MICis the cumulative percentage of a 24-h period that the drug concentration exceeds the MIC under steady-state pharmacokinetic conditions), as analyzed by a sigmoid maximum-effect (Emax) model (R2> 0.69). The superior efficacy of NZ2114 in this MRSA IE model suggests the potential for further development of this compound for treating serious MRSA infections.


Sign in / Sign up

Export Citation Format

Share Document