scholarly journals Complex Multilevel Control of Hemolysin Production by Uropathogenic Escherichia coli

mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Nguyen Thi Khanh Nhu ◽  
Minh-Duy Phan ◽  
Brian M. Forde ◽  
Ambika M. V. Murthy ◽  
Kate M. Peters ◽  
...  

ABSTRACT Uropathogenic Escherichia coli (UPEC) is the major cause of urinary tract infections. Nearly half of all UPEC strains secrete hemolysin, a cytotoxic pore-forming toxin. Here, we show that the prevalence of the hemolysin toxin gene (hlyA) is highly variable among the most common 83 E. coli sequence types (STs) represented on the EnteroBase genome database. To explore this diversity in the context of a defined monophyletic lineage, we contextualized sequence variation of the hlyCABD operon within the genealogy of the globally disseminated multidrug-resistant ST131 clone. We show that sequence changes in hlyCABD and its newly defined 1.616-kb-long leader sequence correspond to phylogenetic designation, and that ST131 strains with the strongest hemolytic activity belong to the most extensive multidrug-resistant sublineage (clade C2). To define the set of genes involved in hemolysin production, the clade C2 strain S65EC was completely sequenced and subjected to a genome-wide screen by combining saturated transposon mutagenesis and transposon-directed insertion site sequencing with the capacity to lyse red blood cells. Using this approach, and subsequent targeted mutagenesis and complementation, 13 genes were confirmed to be specifically required for production of active hemolysin. New hemolysin-controlling elements included discrete sets of genes involved in lipopolysaccharide (LPS) inner core biosynthesis (waaC, waaF, waaG, and rfaE) and cytoplasmic chaperone activity (dnaK and dnaJ), and we show these are required for hemolysin secretion. Overall, this work provides a unique description of hemolysin sequence diversity in a single clonal lineage and describes a complex multilevel system of regulatory control for this important toxin. IMPORTANCE Uropathogenic E. coli (UPEC) is the major cause of urinary tract infections and a frequent cause of sepsis. Nearly half of all UPEC strains produce the potent cytotoxin hemolysin, and its expression is associated with enhanced virulence. In this study, we explored hemolysin variation within the globally dominant UPEC ST131 clone, finding that strains from the ST131 sublineage with the greatest multidrug resistance also possess the strongest hemolytic activity. We also employed an innovative forward genetic screen to define the set of genes required for hemolysin production. Using this approach, and subsequent targeted mutagenesis and complementation, we identified new hemolysin-controlling elements involved in LPS inner core biosynthesis and cytoplasmic chaperone activity, and we show that mechanistically they are required for hemolysin secretion. These original discoveries substantially enhance our understanding of hemolysin regulation, secretion and function.

mBio ◽  
2014 ◽  
Vol 5 (2) ◽  
Author(s):  
Dana Willner ◽  
Serene Low ◽  
Jason A. Steen ◽  
Narelle George ◽  
Graeme R. Nimmo ◽  
...  

ABSTRACTUrinary tract infections (UTIs) are one of the most commonly acquired bacterial infections in humans, and uropathogenicEscherichia colistrains are responsible for over 80% of all cases. The standard method for identification of uropathogens in clinical laboratories is cultivation, primarily using solid growth media under aerobic conditions, coupled with morphological and biochemical tests of typically a single isolate colony. However, these methods detect only culturable microorganisms, and characterization is phenotypic in nature. Here, we explored the genotypic identity of communities in acute uncomplicated UTIs from 50 individuals by using culture-independent amplicon pyrosequencing and whole-genome and metagenomic shotgun sequencing. Genus-level characterization of the UTI communities was achieved using the 16S rRNA gene (V8 region). Overall UTI community richness was very low in comparison to other human microbiomes. We strain-typedEscherichia-dominated UTIs using amplicon pyrosequencing of the fimbrial adhesin gene,fimH. There were nine highly abundantfimHtypes, and each UTI sample was dominated by a single type. Molecular analysis of the corresponding clinical isolates revealed that in the majority of cases the isolate was representative of the dominant taxon in the community at both the genus and the strain level. Shotgun sequencing was performed on a subset of eightE. coliurine UTI and isolate pairs. The majority of UTI microbial metagenomic sequences mapped to isolate genomes, confirming the results obtained using phylogenetic markers. We conclude that for the majority of acute uncomplicatedE. coli-mediated UTIs, single cultured isolates are diagnostic of the infection.IMPORTANCEIn clinical practice, the diagnosis and treatment of acute uncomplicated urinary tract infection (UTI) are based on analysis of a single bacterial isolate cultured from urine, and it is assumed that this isolate represents the dominant UTI pathogen. However, these methods detect only culturable bacteria, and the existence of multiple pathogens as well as strain diversity within a single infection is not examined. Here, we explored bacteria present in acute uncomplicated UTIs using culture-independent sequence-based methods.Escherichia coliwas the most common organism identified, and analysis ofE. colidominant UTI samples and their paired clinical isolates revealed that in the majority of infections the cultured isolate was representative of the dominant taxon at both the genus and the strain level. Our data demonstrate that in most cases single cultured isolates are diagnostic of UTI and are consistent with the notion of bottlenecks that limit strain diversity during UTI pathogenesis.


2011 ◽  
Vol 80 (2) ◽  
pp. 493-505 ◽  
Author(s):  
Patrick D. Vigil ◽  
Travis J. Wiles ◽  
Michael D. Engstrom ◽  
Lev Prasov ◽  
Matthew A. Mulvey ◽  
...  

ABSTRACTUropathogenicEscherichia coli(UPEC) is responsible for the majority of uncomplicated urinary tract infections (UTI) and represents the most common bacterial infection in adults. UPEC utilizes a wide range of virulence factors to colonize the host, including the novel repeat-in-toxin (RTX) protein TosA, which is specifically expressed in the host urinary tract and contributes significantly to the virulence and survival of UPEC.tosA, found in strains within the B2 phylogenetic subgroup ofE. coli, serves as a marker for strains that also contain a large number of well-characterized UPEC virulence factors. The presence oftosAin anE. coliisolate predicts successful colonization of the murine model of ascending UTI, regardless of the source of the isolate. Here, a detailed analysis of the function oftosArevealed that this gene is transcriptionally linked to genes encoding a conserved type 1 secretion system similar to other RTX family members. TosA localized to the cell surface and was found to mediate (i) adherence to host cells derived from the upper urinary tract and (ii) survival in disseminated infections and (iii) to enhance lethality during sepsis (as assessed in two different animal models of infection). An experimental vaccine, using purified TosA, protected vaccinated animals against urosepsis. From this work, it was concluded that TosA belongs to a novel group of RTX proteins that mediate adherence and host damage during UTI and urosepsis and could be a novel target for the development of therapeutics to treat ascending UTIs.


2018 ◽  
Vol 12 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Yacoub R. Nairoukh ◽  
Azmi M. Mahafzah ◽  
Amal Irshaid ◽  
Asem A. Shehabi

Background: Emergence of multi-drug resistant uropathogenic E. coli strains is an increasing problem to empirical treatment of urinary tract infections in many countries. This study investigated the magnitude of this problem in Jordan. Methods: A total of 262 E. coli isolates were recovered from urine samples of Jordanian patients which were suspected to have urinary tract infections (UTIs). All isolates were primarily identified by routine biochemical tests and tested for antimicrobial susceptibility by disc diffusion method. Fifty representative Multidrug Resistance (MDR) E. coli isolates to 3 or more antibiotic classes were tested for the presence of resistance genes of blaCTX-M- 1, 9 and 15, carbapenemase (blaIMP, blaVIM, blaNDM-1, blaOXA-48), fluoroquinolones mutated genes (parC and gyrA) and clone of ST131 type using PCR methods. Results: A total of 150/262 (57.3%) of E. coli isolates were MDR. Urine samples of hospitalized patients showed significantly more MDR isolates than outpatients. Fifty representative MDR E. coli isolates indicated the following molecular characteristics: All were positive for mutated parC gene and gyrA and for ST131 clone, and 78% were positive for genes of CTX-M-15, 76% for CTX-M-I and for 8% CTX-M-9, respectively. Additionally, all 50 MDR E. coli isolates were negative for carbapenemase genes (blaIMP, blaVIM, blaNDM-1, blaOXA-48), except of one isolate was positive for blaKPC-2 . Conclusion: This study indicates alarming high rates recovery of MDR uropathogenic E. coli from Jordanian patients associated with high rates of positive ST131 clone, fluoroquinolone resistant and important types of blaCTX-M.


2019 ◽  
Vol 201 (16) ◽  
Author(s):  
Christopher J. Alteri ◽  
Stephanie D. Himpsl ◽  
Allyson E. Shea ◽  
Harry L. T. Mobley

ABSTRACTBacterial metabolism is necessary for adaptation to the host microenvironment. Flexible metabolic pathways allow uropathogenicEscherichia coli(UPEC) to harmlessly reside in the human intestinal tract and cause disease upon extraintestinal colonization.E. coliintestinal colonization requires carbohydrates as a carbon source, while UPEC extraintestinal colonization requires gluconeogenesis and the tricarboxylic acid cycle. UPEC containing disruptions in two irreversible glycolytic steps involving 6-carbon (6-phosphofructokinase;pfkA) and 3-carbon (pyruvate kinase;pykA) substrates have no fitness defect during urinary tract infection (UTI); however, both reactions are catalyzed by isozymes: 6-phosphofructokinases Pfk1 and Pfk2, encoded bypfkAandpfkB, and pyruvate kinases Pyk II and Pyk I, encoded bypykAandpykF. UPEC strains lacking one or both phosphofructokinase-encoding genes (pfkBandpfkA pfkB) and strains lacking one or both pyruvate kinase genes (pykFandpykA pykF) were investigated to determine their regulatory roles in carbon flow during glycolysis by examining their fitness during UTI andin vitrogrowth requirements. Loss of a single phosphofructokinase-encoding gene has no effect on fitness, while thepfkA pfkBdouble mutant outcompeted the parental strain in the bladder. A defect in bladder and kidney colonization was observed with loss ofpykF, while loss ofpykAresulted in a fitness advantage. ThepykA pykFmutant was indistinguishable from wild-typein vivo, suggesting that the presence of Pyk II rather than the loss of Pyk I itself is responsible for the fitness defect in thepykFmutant. These findings suggest thatE. colisuppresses latent enzymes to survive in the host urinary tract.IMPORTANCEUrinary tract infections are the most frequently diagnosed urologic disease, with uropathogenicEscherichia coli(UPEC) infections placing a significant financial burden on the health care system by generating more than two billion dollars in annual costs. This, in combination with steadily increasing antibiotic resistances to present day treatments, necessitates the discovery of new antimicrobial agents to combat these infections. By broadening our scope beyond the study of virulence properties and investigating bacterial physiology and metabolism, we gain a better understanding of how pathogens use nutrients and compete within host microenvironments, enabling us to cultivate new therapeutics to exploit and target pathogen growth requirements in a specific host environment.


2013 ◽  
Vol 57 (9) ◽  
pp. 4512-4517 ◽  
Author(s):  
Etienne Ruppé ◽  
Brandusa Lixandru ◽  
Radu Cojocaru ◽  
Çağrı Büke ◽  
Elisabeth Paramythiotou ◽  
...  

ABSTRACTExtended-spectrum-beta-lactamase (ESBL)-producingEscherichia coli(ESBLE. coli) strains are of major concern because few antibiotics remain active against these bacteria. We investigated the association between the fecal relative abundance (RA) of ESBL-producingE. coli(ESBL-RA) and the occurrence of ESBLE. coliurinary tract infections (UTIs). The first stool samples passed after suspicion of UTI from 310 women with subsequently confirmedE. coliUTIs were sampled and tested for ESBL-RA by culture on selective agar. Predictive values of ESBL-RA for ESBLE. coliUTI were analyzed for women who were not exposed to antibiotics when the stool was passed. ESBLE. coliisolates were characterized for ESBL type, phylogroup, relatedness, and virulence factors. The prevalence of ESBLE. colifecal carriage was 20.3%, with ESBLE. coliUTIs being present in 12.3% of the women. The mean ESBL-RA (95% confidence interval [CI]) was 13-fold higher in women exposed to antibiotics at the time of sampling than in those not exposed (14.3% [range, 5.6% to 36.9%] versus 1.1% [range, 0.32% to 3.6%], respectively;P< 0.001) and 18-fold higher in women with ESBLE. coliUTI than in those with anotherE. coliUTI (10.0% [range, 0.54% to 100%] versus 0.56% [range, 0.15% to 2.1%[, respectively;P< 0.05). An ESBL-RA of <0.1% was 100% predictive of a non-ESBLE. coliUTI. ESBL type, phylogroup, relatedness, and virulence factors were not found to be associated with ESBL-RA. In conclusion, ESBL-RA was linked to the occurrence of ESBLE. coliUTI in women who were not exposed to antibiotics and who had the same clone ofE. coliin urine samples and fecal samples. Especially, a low ESBL-RA appeared to be associated with a low risk of ESBLE. coliinfection.


2014 ◽  
Vol 82 (4) ◽  
pp. 1572-1578 ◽  
Author(s):  
Karen L. Nielsen ◽  
Pia Dynesen ◽  
Preben Larsen ◽  
Lotte Jakobsen ◽  
Paal S. Andersen ◽  
...  

ABSTRACTCathelicidin (LL-37) and human β-defensin 1 (hBD-1) are important components of the innate defense in the urinary tract. The aim of this study was to characterize whether these peptides are important for developing uncomplicatedEscherichia coliurinary tract infections (UTIs). This was investigated by comparing urinary peptide levels of UTI patients during and after infection to those of controls, as well as characterizing the fecal flora of participants with respect to susceptibility to LL-37 andin vivovirulence. Forty-seven UTI patients and 50 controls who had never had a UTI were included. Participants were otherwise healthy, premenopausal, adult women. LL-37 MIC levels were compared for fecalE. coliclones from patients and controls and were also compared based on phylotypes (A, B1, B2, and D).In vivovirulence was investigated in the murine UTI model by use of selected fecal isolates from patients and controls. On average, UTI patients had significantly more LL-37 in urine during infection than postinfection, and patient LL-37 levels postinfection were significantly lower than those of controls. hBD-1 showed similar urine levels for UTI patients and controls. FecalE. coliisolates from controls had higher LL-37 susceptibility than fecal and UTIE. coliisolates from UTI patients.In vivostudies showed a high level of virulence of fecalE. coliisolates from both patients and controls and showed no difference in virulence correlated with the LL-37 MIC level. The results indicate that the concentration of LL-37 in the urinary tract and low susceptibility to LL-37 may increase the likelihood of UTI in a complex interplay between host and pathogen attributes.


2014 ◽  
Vol 59 (1) ◽  
pp. 289-298 ◽  
Author(s):  
Karen O'Dwyer ◽  
Aaron T. Spivak ◽  
Karen Ingraham ◽  
Sharon Min ◽  
David J. Holmes ◽  
...  

ABSTRACTGSK2251052, a novel leucyl-tRNA synthetase (LeuRS) inhibitor, was in development for the treatment of infections caused by multidrug-resistant Gram-negative pathogens. In a phase II study (study LRS114688) evaluating the efficacy of GSK2251052 in complicated urinary tract infections, resistance developed very rapidly in 3 of 14 subjects enrolled, with ≥32-fold increases in the GSK2251052 MIC of the infecting pathogen being detected. A fourth subject did not exhibit the development of resistance in the baseline pathogen but posttherapy did present with a different pathogen resistant to GSK2251052. Whole-genome DNA sequencing ofEscherichia coliisolates collected longitudinally from two study LRS114688 subjects confirmed that GSK2251052 resistance was due to specific mutations, selected on the first day of therapy, in the LeuRS editing domain. Phylogenetic analysis strongly suggested that resistantEscherichia coliisolates resulted from clonal expansion of baseline susceptible strains. This resistance development likely resulted from the confluence of multiple factors, of which only some can be assessed preclinically. Our study shows the challenges of developing antibiotics and the importance of clinical studies to evaluate their effect on disease pathogenesis. (These studies have been registered at ClinicalTrials.gov under registration no. NCT01381549 for the study of complicated urinary tract infections and registration no. NCT01381562 for the study of complicated intra-abdominal infections.)


2017 ◽  
Vol 85 (10) ◽  
Author(s):  
Miriam Heitmueller ◽  
André Billion ◽  
Ulrich Dobrindt ◽  
Andreas Vilcinskas ◽  
Krishnendu Mukherjee

ABSTRACT Innate-immunity-related genes in humans are activated during urinary tract infections (UTIs) caused by pathogenic strains of Escherichia coli but are suppressed by commensals. Epigenetic mechanisms play a pivotal role in the regulation of gene expression in response to environmental stimuli. To determine whether epigenetic mechanisms can explain the different behaviors of pathogenic and commensal bacteria, we infected larvae of the greater wax moth, Galleria mellonella, a widely used model insect host, with a uropathogenic E. coli (UPEC) strain that causes symptomatic UTIs in humans or a commensal-like strain that causes asymptomatic bacteriuria (ABU). Infection with the UPEC strain (CFT073) was more lethal to larvae than infection with the attenuated ABU strain (83972) due to the recognition of each strain by different Toll-like receptors, ultimately leading to differential DNA/RNA methylation and histone acetylation. We used next-generation sequencing and reverse transcription (RT)-PCR to correlate epigenetic changes with the induction of innate-immunity-related genes. Transcriptomic analysis of G. mellonella larvae infected with E. coli strains CFT073 and 83972 revealed strain-specific variations in the class and expression levels of genes encoding antimicrobial peptides, cytokines, and enzymes controlling DNA methylation and histone acetylation. Our results provide evidence for the differential epigenetic regulation of transcriptional reprogramming by UPEC and ABU strains of E. coli in G. mellonella larvae, which may be relevant to understanding the different behaviors of these bacterial strains in the human urinary tract.


2021 ◽  
Vol 8 (9) ◽  
pp. 396-407
Author(s):  
Sheriff Wakil ◽  
Mustafa Alhaji Isa ◽  
Adam Mustapa

Multidrug resistance among Escherichia coli causing urinary tract infections (UTIs) and diarrhea are major public health problem worldwide which cause difficulty in treating the infections caused by Escherichia coli due to the high resistances. The study is aimed to determine the phenotypic and molecular detection of multidrug resistant E. coli isolated from clinical samples of patients attending selected Hospitals in Damaturu, Yobe State-Nigeria. Methods: Two hundred (200) clinical samples were collected aseptically from patient diagnosed with (100 stool samples) and UTI’s (100 urine samples) using sterile universal container. The samples were processed using standard microbiological methods for identification of E. coli. Samples were cultured on MacConkey agar (stool) and Cystine lactose electrolyte deficient agar (urine). The resulting colonies of isolates were further subculture on Eosin methylene blue agar for confirmatory and followed by gram stain, biochemical identification at Microbiology laboratory unit of Yobe State Specialist and Yobe State Teaching Hospital respectively. The antimicrobial susceptibility patterns were determined using Kirby-Bauer disc diffusion techniques and the phenotypic expression of extended spectrum beta-lactamases (ESBLs) were determined using modified double disc synergy test (MDDST) and also the three (3) resistance genes (blaTEM, accC1 and qnrA) were detected using polymerase chain reaction. Results: One hundred and twenty-two (122) isolates were resistant to antibiotics. The highest level of resistance was against amoxicillin (90.2%) while the least resistance was against sparfloxacin (24.3%). Thirty-seven (37) E. coli isolates shows MDR; the highest MDR was (24.3%) while least MDR was (5.4%). The PCR amplification of resistant genes (blaTEM, accC1 and qnrA) were detected on E. coli that shows positive ESBL and the bands were separated using agarose gel electrophoresis. Conclusion: The findings of this study show augmentin, ciprofloxacin and sparfloxacin are the most effective antibiotics against E. coli isolated from patients attending the two hospitals in Damaturu; who are diagnose with UTI and diarrheic infection. The resistant genes include; blaTEM, accC1 and qnrA coding for beta-lactam, aminoglycoside and quinolones were present in E. coli isolated from patients attending selected Hospitals in Yobe State, Nigeria. Keywords: Multidrug resistant, Escherichia coli, extended spectrum beta lactamase, resistance-associated genes, urinary tract infections, diarrheic.


2020 ◽  
Vol 9 (17) ◽  
Author(s):  
Yishan Yang ◽  
Christopher H. Sommers ◽  
Eyitayo O. Adenipekun ◽  
Marina Ceruso ◽  
Charlene R. Jackson ◽  
...  

Escherichia coli sequence type 131 (ST131) has recently emerged as a leading multidrug-resistant pathogen that causes urinary tract and bloodstream infections in humans. Here, we report the draft genomic sequences of three E. coli ST131 isolates, H45, H43ii, and H43iii, from urine samples of patients in Lagos, Nigeria.


Sign in / Sign up

Export Citation Format

Share Document