scholarly journals Distinctive Roles of Two Acinetobactin Isomers in Challenging Host Nutritional Immunity

mBio ◽  
2021 ◽  
Author(s):  
Mingi Kim ◽  
Do Young Kim ◽  
Woon Young Song ◽  
So Eun Park ◽  
Simone A. Harrison ◽  
...  

Acinetobacter baumannii has acquired antibiotic resistance at an alarming rate, and it is becoming a serious threat to society, particularly due to the paucity of effective treatment options. Acinetobactin is a siderophore of Acinetobacter baumannii , responsible for active iron supply, and it serves as a key virulence factor to counter host nutritional immunity during infection.

mBio ◽  
2010 ◽  
Vol 1 (4) ◽  
Author(s):  
Kelli L. Palmer ◽  
Michael S. Gilmore

ABSTRACT Clustered, regularly interspaced short palindromic repeats (CRISPR) provide bacteria and archaea with sequence-specific, acquired defense against plasmids and phage. Because mobile elements constitute up to 25% of the genome of multidrug-resistant (MDR) enterococci, it was of interest to examine the codistribution of CRISPR and acquired antibiotic resistance in enterococcal lineages. A database was built from 16 Enterococcus faecalis draft genome sequences to identify commonalities and polymorphisms in the location and content of CRISPR loci. With this data set, we were able to detect identities between CRISPR spacers and sequences from mobile elements, including pheromone-responsive plasmids and phage, suggesting that CRISPR regulates the flux of these elements through the E. faecalis species. Based on conserved locations of CRISPR and CRISPR-cas loci and the discovery of a new CRISPR locus with associated functional genes, CRISPR3-cas, we screened additional E. faecalis strains for CRISPR content, including isolates predating the use of antibiotics. We found a highly significant inverse correlation between the presence of a CRISPR-cas locus and acquired antibiotic resistance in E. faecalis, and examination of an additional eight E. faecium genomes yielded similar results for that species. A mechanism for CRISPR-cas loss in E. faecalis was identified. The inverse relationship between CRISPR-cas and antibiotic resistance suggests that antibiotic use inadvertently selects for enterococcal strains with compromised genome defense. IMPORTANCE For many bacteria, including the opportunistically pathogenic enterococci, antibiotic resistance is mediated by acquisition of new DNA and is frequently encoded on mobile DNA elements such as plasmids and transposons. Certain enterococcal lineages have recently emerged that are characterized by abundant mobile DNA, including numerous viruses (phage), and plasmids and transposons encoding multiple antibiotic resistances. These lineages cause hospital infection outbreaks around the world. The striking influx of mobile DNA into these lineages is in contrast to what would be expected if a self (genome)-defense system was present. Clustered, regularly interspaced short palindromic repeat (CRISPR) defense is a recently discovered mechanism of prokaryotic self-defense that provides a type of acquired immunity. Here, we find that antibiotic resistance and possession of complete CRISPR loci are inversely related and that members of recently emerged high-risk enterococcal lineages lack complete CRISPR loci. Our results suggest that antibiotic therapy inadvertently selects for enterococci with compromised genome defense.


mSphere ◽  
2016 ◽  
Vol 1 (3) ◽  
Author(s):  
Valerie J. Price ◽  
Wenwen Huo ◽  
Ardalan Sharifi ◽  
Kelli L. Palmer

ABSTRACT Enterococcus faecalis is a bacterium that normally inhabits the gastrointestinal tracts of humans and other animals. Although these bacteria are members of our native gut flora, they can cause life-threatening infections in hospitalized patients. Antibiotic resistance genes appear to be readily shared among high-risk E. faecalis strains, and multidrug resistance in these bacteria limits treatment options for infections. Here, we find that CRISPR-Cas and restriction-modification systems, which function as adaptive and innate immune systems in bacteria, significantly impact the spread of antibiotic resistance genes in E. faecalis populations. The loss of these systems in high-risk E. faecalis suggests that they are immunocompromised, a tradeoff that allows them to readily acquire new genes and adapt to new antibiotics. Enterococcus faecalis is an opportunistic pathogen and a leading cause of nosocomial infections. Conjugative pheromone-responsive plasmids are narrow-host-range mobile genetic elements (MGEs) that are rapid disseminators of antibiotic resistance in the faecalis species. Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas and restriction-modification confer acquired and innate immunity, respectively, against MGE acquisition in bacteria. Most multidrug-resistant E. faecalis isolates lack CRISPR-Cas and possess an orphan locus lacking cas genes, CRISPR2, that is of unknown function. Little is known about restriction-modification defense in E. faecalis. Here, we explore the hypothesis that multidrug-resistant E. faecalis strains are immunocompromised. We assessed MGE acquisition by E. faecalis T11, a strain closely related to the multidrug-resistant hospital isolate V583 but which lacks the ~620 kb of horizontally acquired genome content that characterizes V583. T11 possesses the E. faecalis CRISPR3-cas locus and a predicted restriction-modification system, neither of which occurs in V583. We demonstrate that CRISPR-Cas and restriction-modification together confer a 4-log reduction in acquisition of the pheromone-responsive plasmid pAM714 in biofilm matings. Additionally, we show that the orphan CRISPR2 locus is functional for genome defense against another pheromone-responsive plasmid, pCF10, only in the presence of cas9 derived from the E. faecalis CRISPR1-cas locus, which most multidrug-resistant E. faecalis isolates lack. Overall, our work demonstrated that the loss of only two loci led to a dramatic reduction in genome defense against a clinically relevant MGE, highlighting the critical importance of the E. faecalis accessory genome in modulating horizontal gene transfer. Our results rationalize the development of antimicrobial strategies that capitalize upon the immunocompromised status of multidrug-resistant E. faecalis. IMPORTANCE Enterococcus faecalis is a bacterium that normally inhabits the gastrointestinal tracts of humans and other animals. Although these bacteria are members of our native gut flora, they can cause life-threatening infections in hospitalized patients. Antibiotic resistance genes appear to be readily shared among high-risk E. faecalis strains, and multidrug resistance in these bacteria limits treatment options for infections. Here, we find that CRISPR-Cas and restriction-modification systems, which function as adaptive and innate immune systems in bacteria, significantly impact the spread of antibiotic resistance genes in E. faecalis populations. The loss of these systems in high-risk E. faecalis suggests that they are immunocompromised, a tradeoff that allows them to readily acquire new genes and adapt to new antibiotics.


2021 ◽  
Vol 65 (5) ◽  
Author(s):  
Sazlyna Mohd Sazlly Lim ◽  
Aaron J. Heffernan ◽  
Jason A. Roberts ◽  
Fekade B. Sime

ABSTRACT Due to limited treatment options for carbapenem-resistant Acinetobacter baumannii (CR-AB) infections, antibiotic combinations are now considered potential treatments for CR-AB. This study aimed to explore the utility of fosfomycin-sulbactam combination (FOS/SUL) therapy against CR-AB isolates. Synergism of FOS/SUL against 50 clinical CR-AB isolates was screened using the checkerboard method. Thereafter, time-kill studies against two CR-AB isolates were performed. The time-kill data were described using a semimechanistic pharmacokinetic/pharmacodynamic (PK/PD) model. Monte Carlo simulations were then performed to estimate the probability of stasis, 1-log kill, and 2-log kill after 24 h of combination therapy. The FOS/SUL combination demonstrated a synergistic effect against 74% of isolates. No antagonism was observed. The MIC50 and MIC90 of FOS/SUL were decreased 4- to 8-fold, compared to the monotherapy MIC50 and MIC90. In the time-kill studies, the combination displayed bactericidal activity against both isolates and synergistic activity against one isolate at the highest clinically achievable concentrations. Our PK/PD model was able to describe the interaction between fosfomycin and sulbactam in vitro. Bacterial kill was mainly driven by sulbactam, with fosfomycin augmentation. FOS/SUL regimens that included sulbactam at 4 g every 8 h demonstrated a probability of target attainment of 1-log10 kill at 24 h of ∼69 to 76%, compared to ∼15 to 30% with monotherapy regimens at the highest doses. The reduction in the MIC values and the achievement of a moderate PTA of a 2-log10 reduction in bacterial burden demonstrated that FOS/SUL may potentially be effective against some CR-AB infections.


2019 ◽  
Vol 87 (12) ◽  
Author(s):  
Laura E. Hesse ◽  
Zachery R. Lonergan ◽  
William N. Beavers ◽  
Eric P. Skaar

ABSTRACT Acinetobacter baumannii is an opportunistic bacterial pathogen capable of causing a variety of infections, including pneumonia, sepsis, wound, and burn infections. A. baumannii is an increasing threat to public health due to the prevalence of multidrug-resistant strains, leading the World Health Organization to declare A. baumannii a “Priority 1: Critical” pathogen, for which the development of novel antimicrobials is desperately needed. Zinc (Zn) is an essential nutrient that pathogenic bacteria, including A. baumannii, must acquire from their hosts in order to survive. Consequently, vertebrate hosts have defense mechanisms to sequester Zn from invading bacteria through a process known as nutritional immunity. Here, we describe a Zn uptake (Znu) system that enables A. baumannii to overcome this host-imposed Zn limitation. The Znu system consists of an inner membrane ABC transporter and an outer membrane TonB-dependent receptor. Strains of A. baumannii lacking any individual Znu component are unable to grow in Zn-starved conditions, including in the presence of the host nutritional immunity protein calprotectin. The Znu system contributes to Zn-limited growth by aiding directly in the uptake of Zn into A. baumannii cells and is important for pathogenesis in murine models of A. baumannii infection. These results demonstrate that the Znu system allows A. baumannii to subvert host nutritional immunity and acquire Zn during infection.


Antibiotics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 148 ◽  
Author(s):  
Cuong Hoang Quoc ◽  
Thao Nguyen Thi Phuong ◽  
Hai Nguyen Duc ◽  
Trung Tran Le ◽  
Hang Tran Thi Thu ◽  
...  

Background: Acinetobacter baumannii (Ab) is an opportunistic bacterial pathogen found in hospital-acquired infections including nosocomial pneumonia, especially multidrug-resistant Ab. This study aims to survey the drug resistance profiles of Ab isolated from patients in Thong Nhat Dong Nai General Hospital and assess the relationship between genotypes and antibiotic resistance; Methods: Ninety-seven Ab strains isolated from 340 lower respiratory tract specimens among pneumonia patients were used to screen the most common local carbapenemase genes. Antimicrobial susceptibility testing results and demographic data were collected and minimum inhibitory concentrations (MIC) of colistin were also determined; Results: Over 80% and 90% of Ab strains were determined as carbapenem-resistant and multidrug-resistant (MDR), respectively. Most of the strains carried carbapenemase genes, including blaOXA-51, blaOXA-23-like, blaOXA-58-like, and blaNDM-1, with proportions of 97 (100%), 76 (78.4%), 10 (10.3%), 6 (6.2%), respectively. Amongst these genes, blaOXA-23-like was the only gene which significantly influenced the resistance (p < 0.0001); and Conclusions: The severity of Ab antibiotic resistance is urgent and specifically related to carbapenemase encoding genes. Therefore, screening of MDR Ab and carbapenemase for better treatment options is necessary.


2018 ◽  
Vol 12 (1) ◽  
pp. 254-260 ◽  
Author(s):  
Reza Ranjbar ◽  
Sajjad S. Tolon ◽  
Shahin Zayeri ◽  
Mehrdad Sami

Background:Bacterial resistance to antibiotics limits treatment options, increases morbidity and mortality, and raises the risk of antibiotic-associated adverse events. Antibacterial resistance emerges rapidly following an increase in the consumption of antibiotics against infectious diseases. The spread of ESBL producing strains has a limiting factor based on antibiotic function for the treatment of infections particularly caused byAcinetobacter baumannii(A. baumannii).Objective:This study was conducted to evaluate the prevalence of antimicrobial resistance and distribution ofblaTEM,blaCTX, andblaSHVgenes amongA. baumanniistrains isolated from clinical samples at a major hospital in Teheran, Iran.Methods:A. baumanniistrains were isolated and identified using standard microbiological methods. The disc diffusion and combined discs methods were used for testing antimicrobial susceptibility and to identify the strains producing Extended-Spectrum Beta-Lactamases (ESBL), respectively. DNA extraction was done by boiling method. Finally, the frequency of resistant genes includingblaTEM,blaCTX, andblaSHVin ESBL producing isolates was studied by PCR.Results:Gender distribution in this study was 53 (53%) samples for men and 47 (47%) for women. Totally, one hundredA. baumanniistrains were isolated. More than 93% of the isolates were multi drug resistant. The highest to lowest antibiotic resistance was observed against amoxicillin/clavulanic acid (98%), ceftriaxone (96%), cefotaxime (94%), and ceftazidime (93%), respectively. The frequency of positive phenotypic test of ESBL was 19% and 16% for CAZ-C and CTX-C, respectively. The frequency ofblaTEM,blaCTX, andblaSHVgenes was 52.1, 43.4, and 21.7, respectively.Conclusion:A. baumanniiisolates exhibited an extremely worrying level of antibiotic resistance, and a high percentage of the isolates showed MDR in this study. This is a serious warning because ESBLs are a major threat to the effectiveness of antibiotics that are currently available for medical uses. The frequency of genes encoded ESBL isolates ofA. baumanniimay be due to overuse and misuse of antibiotics.


2015 ◽  
Vol 60 (1) ◽  
pp. 52-56 ◽  
Author(s):  
Michael L. Beeton ◽  
Victoria J. Chalker ◽  
Lucy C. Jones ◽  
Nicola C. Maxwell ◽  
O. Brad Spiller

ABSTRACTUreaplasmaspp. are associated with numerous clinical sequelae with treatment options being limited due to patient and pathogen factors. This report examines the prevalence and mechanisms of antibiotic resistance among clinical strains isolated from 95 neonates, 32 women attending a sexual health clinic, and 3 patients under investigation for immunological disorders, between 2007 and 2013 in England and Wales. MICs were determined by using broth microdilution assays, and a subset of isolates were compared using the broth microdilution method and the Mycoplasma IST2 assay. The underlying molecular mechanisms for resistance were determined for all resistant isolates. Three isolates carried thetet(M) tetracycline resistance gene (2.3%; confidence interval [CI], 0.49 to 6.86%); two isolates were ciprofloxacin resistant (1.5%; CI, 0.07 to 5.79%) but sensitive to levofloxacin and moxifloxacin, while no resistance was seen to any macrolides tested. The MIC values for chloramphenicol were universally low (2 μg/ml), while inherently high-level MIC values for gentamicin were seen (44 to 66 μg/ml). The Mycoplasma IST2 assay identified a number of false positives for ciprofloxacin resistance, as the method does not conform to international testing guidelines. While antibiotic resistance amongUreaplasmaisolates remains low, continued surveillance is essential to monitor trends and threats from importation of resistant clones.


2013 ◽  
Vol 57 (10) ◽  
pp. 4761-4768 ◽  
Author(s):  
Simon Dally ◽  
Karin Lemuth ◽  
Martin Kaase ◽  
Steffen Rupp ◽  
Cornelius Knabbe ◽  
...  

ABSTRACTIn recent decades,Acinetobacter baumanniihas emerged as an organism of great concern due to its ability to accumulate antibiotic resistance. In order to improve the diagnosis of resistance determinants inA. baumanniiin terms of lead time and accuracy, we developed a microarray that can be used to detect 91 target sequences associated with antibiotic resistance within 4 h from bacterial culture to result. The array was validated with 60 multidrug-resistant strains ofA. baumanniiin a blinded, prospective study. The results were compared to phenotype results determined by the automated susceptibility testing system VITEK2. Antibiotics considered were piperacillin-tazobactam, ceftazidime, imipenem, meropenem, trimethoprim-sulfamethoxazole, amikacin, gentamicin, tobramycin, ciprofloxacin, and tigecycline. The average positive predictive value, negative predictive value, sensitivity, and specificity were 98, 98, 99, and 94%, respectively. For carbapenemase genes, the array results were compared to singleplex PCR results provided by the German National Reference Center for Gram-Negative Pathogens, and results were in complete concordance. The presented array is able to detect all relevant resistance determinants ofA. baumanniiin parallel. The short handling time of 4 h from culture to result helps to provide fast results in order to initiate adequate anti-infective therapy for critically ill patients. Another application would be data acquisition for epidemiologic surveillance.


2015 ◽  
Vol 197 (11) ◽  
pp. 1939-1951 ◽  
Author(s):  
Wenwen Huo ◽  
Hannah M. Adams ◽  
Michael Q. Zhang ◽  
Kelli L. Palmer

ABSTRACTEnterococcus faecalisis a Gram-positive bacterium that natively colonizes the human gastrointestinal tract and opportunistically causes life-threatening infections. Multidrug-resistant (MDR)E. faecalisstrains have emerged, reducing treatment options for these infections. MDRE. faecalisstrains have large genomes containing mobile genetic elements (MGEs) that harbor genes for antibiotic resistance and virulence determinants. Bacteria commonly possess genome defense mechanisms to block MGE acquisition, and we hypothesize that these mechanisms have been compromised in MDRE. faecalis. In restriction-modification (R-M) defense, the bacterial genome is methylated at cytosine (C) or adenine (A) residues by a methyltransferase (MTase), such that nonself DNA can be distinguished from self DNA. A cognate restriction endonuclease digests improperly modified nonself DNA. Little is known about R-M inE. faecalis. Here, we use genome resequencing to identify DNA modifications occurring in the oral isolate OG1RF. OG1RF has one of the smallestE. faecalisgenomes sequenced to date and possesses few MGEs. Single-molecule real-time (SMRT) and bisulfite sequencing revealed that OG1RF has global 5-methylcytosine (m5C) methylation at 5′-GCWGC-3′ motifs. A type II R-M system confers the m5C modification, and disruption of this system impacts OG1RF electrotransformability and conjugative transfer of an antibiotic resistance plasmid. A second DNA MTase was poorly expressed under laboratory conditions but conferred globalN4-methylcytosine (m4C) methylation at 5′-CCGG-3′ motifs when expressed inEscherichia coli. Based on our results, we conclude that R-M can act as a barrier to MGE acquisition and likely influences antibiotic resistance gene dissemination in theE. faecalisspecies.IMPORTANCEThe horizontal transfer of antibiotic resistance genes among bacteria is a critical public health concern.Enterococcus faecalisis an opportunistic pathogen that causes life-threatening infections in humans. Multidrug resistance acquired by horizontal gene transfer limits treatment options for these infections. In this study, we used innovative DNA sequencing methodologies to investigate how a model strain ofE. faecalisdiscriminates its own DNA from foreign DNA, i.e., self versus nonself discrimination. We also assess the role of anE. faecalisgenome modification system in modulating conjugative transfer of an antibiotic resistance plasmid. These results are significant because they demonstrate that differential genome modification impacts horizontal gene transfer frequencies inE. faecalis.


Sign in / Sign up

Export Citation Format

Share Document