scholarly journals Cytoplasmic CPSF6 Regulates HIV-1 Capsid Trafficking and Infection in a Cyclophilin A-Dependent Manner

mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Zhou Zhong ◽  
Jiying Ning ◽  
Emerson A. Boggs ◽  
Sooin Jang ◽  
Callen Wallace ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) capsid binds host proteins during infection, including cleavage and polyadenylation specificity factor 6 (CPSF6) and cyclophilin A (CypA). We observe that HIV-1 infection induces higher-order CPSF6 formation, and capsid-CPSF6 complexes cotraffic on microtubules. CPSF6-capsid complex trafficking is impacted by capsid alterations that reduce CPSF6 binding or by excess cytoplasmic CPSF6 expression, both of which are associated with decreased HIV-1 infection. Higher-order CPSF6 complexes bind and disrupt HIV-1 capsid assemblies in vitro. Disruption of HIV-1 capsid binding to CypA leads to increased CPSF6 binding and altered capsid trafficking, resulting in reduced infectivity. Our data reveal an interplay between CPSF6 and CypA that is important for cytoplasmic capsid trafficking and HIV-1 infection. We propose that CypA prevents HIV-1 capsid from prematurely engaging cytoplasmic CPSF6 and that differences in CypA cellular localization and innate immunity may explain variations in HIV-1 capsid trafficking and uncoating in CD4+ T cells and macrophages. IMPORTANCE HIV is the causative agent of AIDS, which has no cure. The protein shell that encases the viral genome, the capsid, is critical for HIV replication in cells at multiple steps. HIV capsid has been shown to interact with multiple cell proteins during movement to the cell nucleus in a poorly understood process that may differ during infection of different cell types. In this study, we show that premature or too much binding of one human protein, cleavage and polyadenylation specificity factor 6 (CPSF6), disrupts the ability of the capsid to deliver the viral genome to the cell nucleus. Another human protein, cyclophilin A (CypA), can shield HIV capsid from premature binding to CPSF6, which can differ in CD4+ T cells and macrophages. Better understanding of how HIV infects cells will allow better drugs to prevent or inhibit infection and pathogenesis.

2020 ◽  
Author(s):  
Zhou Zhong ◽  
Jiying Ning ◽  
Emerson A. Boggs ◽  
Sooin Jang ◽  
Callen Wallace ◽  
...  

SummaryHuman immunodeficiency virus type 1 (HIV-1) capsid binds host proteins during infection, including cleavage and polyadenylation specificity factor 6 (CPSF6) and cyclophilin A (CypA). We observe that HIV-1 infection induces higher-order CPSF6 formation and capsid-CPSF6 complexes co-traffic on microtubules. CPSF6-capsid complex trafficking is impacted by capsid alterations that reduce CPSF6 binding or by excess cytoplasmic CPSF6 expression, both of which are associated with decreased HIV-1 infection. Higher-order CPSF6 complexes bind and disrupt HIV-1 capsid assemblies in vitro. Disruption of HIV-1 capsid binding to CypA leads to increased CPSF6 binding and altered capsid trafficking, resulting in reduced infectivity. Our data reveal an interplay between CPSF6 and CypA that is important for cytoplasmic capsid trafficking and HIV-1 infection. We propose that CypA prevents HIV-1 capsid from prematurely engaging cytoplasmic CPSF6 and that differences in CypA cellular localization and innate immunity may explain cell-specific variations in HIV-1 capsid trafficking and uncoating.Graphical Abstract


2020 ◽  
Author(s):  
Anastasia Selyutina ◽  
Lacy M. Simons ◽  
Angel Bulnes-Ramos ◽  
Judd F. Hultquist ◽  
Felipe Diaz-Griffero

ABSTRACTThe core of HIV-1 viruses bearing the capsid change N74D (HIV-1-N74D) do not bind the human protein cleavage and polyadenylation specificity factor subunit 6 (CPSF6). In addition, HIV-1-N74D viruses have altered patterns of integration site preference in human cell lines. In primary human CD4+ T cells, HIV-1-N74D viruses exhibit infectivity defects when compared to wild type. The reason for this loss of infectivity in primary cells is unknown. We first investigated whether loss of CPSF6 binding accounts for the loss of infectivity. Depletion of CPSF6 in human CD4+ T cells did not affect the early stages of wild-type HIV-1 replication, suggesting that defective infectivity in the case of HIV-1-N74D is not due to the loss of CPSF6 binding. Based on our previous result that cyclophilin A (Cyp A) protected HIV-1 from human tripartite motif-containing protein 5α (TRIM5αhu) restriction in CD4+ T cells, we tested whether TRIM5αhu was involved in the decreased infectivity observed for HIV-1-N74D. Depletion of TRIM5αhu in CD4+ T cells rescued the infectivity of HIV-1-N74D, suggesting that HIV-1-N74D cores interacted with TRIM5αhu. Accordingly, TRIM5αhu binding to HIV-1-N74D cores was increased compared with that of wild-type cores, and consistently, HIV-1-N74D cores lost their ability to bind Cyp A. In conclusion, we showed that the decreased infectivity of HIV-1-N74D in CD4+ T cells is due to a loss of Cyp A protection from TRIM5αhu restriction activity.


2014 ◽  
Vol 89 (1) ◽  
pp. 97-109 ◽  
Author(s):  
Shayarana L. Gooneratne ◽  
Jonathan Richard ◽  
Wen Shi Lee ◽  
Andrés Finzi ◽  
Stephen J. Kent ◽  
...  

ABSTRACTMany attempts to design prophylactic human immunodeficiency virus type 1 (HIV-1) vaccines have focused on the induction of neutralizing antibodies (Abs) that block infection by free virions. Despite the focus on viral particles, virus-infected cells, which can be found within mucosal secretions, are more infectious than free virus bothin vitroandin vivo. Furthermore, assessment of human transmission couples suggests infected seminal lymphocytes might be responsible for a proportion of HIV-1 transmissions. Although vaccines that induce neutralizing Abs are sought, only some broadly neutralizing Abs efficiently block cell-to-cell transmission of HIV-1. As HIV-1 vaccines need to elicit immune responses capable of controlling both free and cell-associated virus, we evaluated the potential of natural killer (NK) cells to respond in an Ab-dependent manner to allogeneic T cells bearing HIV-1 antigens. This study presents data measuring Ab-dependent anti-HIV-1 NK cell responses to primary and transformed allogeneic T-cell targets. We found that NK cells are robustly activated in an anti-HIV-1 Ab-dependent manner against allogeneic targets and that tested target cells are subject to Ab-dependent cytolysis. Furthermore, the educated KIR3DL1+NK cell subset from HLA-Bw4+individuals exhibits an activation advantage over the KIR3DL1−subset that contains both NK cells educated through other receptor/ligand combinations and uneducated NK cells. These results are intriguing and important for understanding the regulation of Ab-dependent NK cell responses and are potentially valuable for designing Ab-dependent therapies and/or vaccines.IMPORTANCENK cell-mediated anti-HIV-1 antibody-dependent functions have been associated with protection from infection and disease progression; however, their role in protecting from infection with allogeneic cells infected with HIV-1 is unknown. We found that HIV-1-specific ADCC antibodies bound to allogeneic cells infected with HIV-1 or coated with HIV-1 gp120 were capable of activating NK cells and/or trigging cytolysis of the allogeneic target cells. This suggests ADCC may be able to assist in preventing infection with cell-associated HIV-1. In order to fully utilize NK cell-mediated Ab-dependent effector functions, it might also be important that educated NK cells, which hold the highest activation potential, can become activated against targets bearing HIV-1 antigens and expressing the ligands for self-inhibitory receptors. Here, we show that with Ab-dependent stimulation, NK cells expressing inhibitory receptors can mediate robust activation against targets expressing the ligands for those receptors.


2020 ◽  
Vol 295 (15) ◽  
pp. 5081-5094
Author(s):  
Evan Chaudhuri ◽  
Sabyasachi Dash ◽  
Muthukumar Balasubramaniam ◽  
Adrian Padron ◽  
Joseph Holland ◽  
...  

Cleavage and polyadenylation specificity factor 6 (CPSF6) is a cellular protein involved in mRNA processing. Emerging evidence suggests that CPSF6 also plays key roles in HIV-1 infection, specifically during nuclear import and integration targeting. However, the cellular and molecular mechanisms that regulate CPSF6 expression are largely unknown. In this study, we report a post-transcriptional mechanism that regulates CPSF6 via the cellular microRNA miR-125b. An in silico analysis revealed that the 3′UTR of CPSF6 contains a miR-125b–binding site that is conserved across several mammalian species. Because miRNAs repress protein expression, we tested the effects of miR-125b expression on CPSF6 levels in miR-125b knockdown and over-expression experiments, revealing that miR-125b and CPSF6 levels are inversely correlated. To determine whether miR-125b post-transcriptionally regulates CPSF6, we introduced the 3′UTR of CPSF6 mRNA into a luciferase reporter and found that miR-125b negatively regulates CPSF6 3′UTR-driven luciferase activity. Accordingly, mutations in the miR-125b seed sequence abrogated the regulatory effect of the miRNA on the CPSF6 3′UTR. Finally, pulldown experiments demonstrated that miR-125b physically interacts with CPSF6 3′UTR. Interestingly, HIV-1 infection down-regulated miR-125b expression concurrent with up-regulation of CPSF6. Notably, miR-125b down-regulation in infected cells was not due to reduced pri-miRNA or pre-miRNA levels. However, miR-125b down-regulation depended on HIV-1 reverse transcription but not viral DNA integration. These findings establish a post-transcriptional mechanism that controls CPSF6 expression and highlight a novel function of miR-125b during HIV-host interaction.


1999 ◽  
Vol 73 (5) ◽  
pp. 3968-3974 ◽  
Author(s):  
Svetlana Glushakova ◽  
Jean-Charles Grivel ◽  
Kalachar Suryanarayana ◽  
Pascal Meylan ◽  
Jeffrey D. Lifson ◽  
...  

ABSTRACT The nef gene is important for the pathogenicity associated with simian immunodeficiency virus infection in rhesus monkeys and with human immunodeficiency virus type 1 (HIV-1) infection in humans. The mechanisms by which nef contributes to pathogenesis in vivo remain unclear. We investigated the contribution of nef to HIV-1 replication in human lymphoid tissue ex vivo by studying infection with parental HIV-1 strain NL4-3 and with anef mutant (ΔnefNL4-3). In human tonsillar histocultures, NL4-3 replicated to higher levels than ΔnefNL4-3 did. Increased virus production with NL4-3 infection was associated with increased numbers of productively infected cells and greater loss of CD4+ T cells over time. While the numbers of productively infected T cells were increased in the presence of nef, the levels of viral expression and production per infected T cell were similar whether the nefgene was present or not. Exogenous interleukin-2 (IL-2) increased HIV-1 production in NL4-3-infected tissue in a dose-dependent manner. In contrast, ΔnefNL4-3 production was enhanced only marginally by IL-2. Thus, Nef can facilitate HIV-1 replication in human lymphoid tissue ex vivo by increasing the numbers of productively infected cells and by increasing the responsiveness to IL-2 stimulation.


2021 ◽  
Author(s):  
Cecilia Svanberg ◽  
Sofia Nyström ◽  
Melissa Govender ◽  
Pradyot Bhattacharya ◽  
Karlhans F Che ◽  
...  

AbstractHIV-1 infection gives rise to a multilayered immune impairment in most infected individuals. The crosstalk between Dendritic cells and T cells plays an important part in the induction of immune responses. The chronic presence of human immunodeficiency virus (HIV)-1 during the dendritic cells (DCs) priming and activation of T cells promotes the expansion of suppressor cells in a contact dependent manner. The mechanism behind the T cell side of this HIV induced impairment is well studied, whereas little is known about the reverse effects exerted on the DCs in this setting.Here we assessed the phenotype and transcriptome profile of mature DCs that have been in contact with suppressive T cells. The DCs in the HIV exposed DC-T cell coculture obtained a more tolerogenic/suppressive phenotype with increased expression of e.g., PDL1, Gal-9, HVEM, and B7H3, mediated by their cellular interaction with T cells. The transcriptomic analysis showed a clear type I IFN response profile as well as an activation of pathways involved in T cell exhaustion.Taken together, our data indicate that the prolonged and strong IFN type I signaling induced by the presence of HIV during DC-T cell cross talk could play an important role in the induction of the tolerogenic DCs and suppressed immune response.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Ashwanth C. Francis ◽  
Mariana Marin ◽  
Parmit K. Singh ◽  
Vasudevan Achuthan ◽  
Mathew J. Prellberg ◽  
...  

AbstractThe early steps of HIV-1 infection, such as uncoating, reverse transcription, nuclear import, and transport to integration sites are incompletely understood. Here, we imaged nuclear entry and transport of HIV-1 replication complexes in cell lines, primary monocyte-derived macrophages (MDMs) and CD4+ T cells. We show that viral replication complexes traffic to and accumulate within nuclear speckles and that these steps precede the completion of viral DNA synthesis. HIV-1 transport to nuclear speckles is dependent on the interaction of the capsid proteins with host cleavage and polyadenylation specificity factor 6 (CPSF6), which is also required to stabilize the association of the viral replication complexes with nuclear speckles. Importantly, integration site analyses reveal a strong preference for HIV-1 to integrate into speckle-associated genomic domains. Collectively, our results demonstrate that nuclear speckles provide an architectural basis for nuclear homing of HIV-1 replication complexes and subsequent integration into associated genomic loci.


2012 ◽  
Vol 56 (8) ◽  
pp. 4381-4390 ◽  
Author(s):  
Martha Stefanidou ◽  
Carolina Herrera ◽  
Naomi Armanasco ◽  
Robin J. Shattock

ABSTRACTThe maturation of newly formed human immunodeficiency virus type 1 (HIV-1) virions is a critical step for the establishment of productive infection. We investigated the potential of saquinavir (SQV), a protease inhibitor (PI) used in highly active antiretroviral therapy (HAART), as a candidate microbicide. SQV inhibited replication of clade B and clade C isolates in a dose-dependent manner in all cellular models tested: PM-1 CD4 T cells, peripheral blood mononuclear cells (PBMCs), monocyte-derived macrophages (MDMs), and immature monocyte-derived dendritic cells (iMDDCs). SQV also inhibited production of infectious virus in cervical, penile, and colorectal explants cocultured with T cells. Moreover, SQV demonstrated inhibitory potency againsttransinfection of T cells byin vitro-derived dendritic cells and by primary dendritic cells that emigrate from penile and cervical tissue explants. No cellular or tissue toxicity was detected in the presence of SQV, suggesting that this drug could be considered for development as a component of an effective microbicide, capable of blocking viral maturation and transmission of HIV-1 at mucosal surfaces.


2004 ◽  
Vol 24 (1) ◽  
pp. 389-397 ◽  
Author(s):  
Angus Henderson ◽  
Adele Holloway ◽  
Raymond Reeves ◽  
David John Tremethick

ABSTRACT Following human immunodeficiency virus type 1 (HIV-1) integration into the host cell's genome, the 5′ long terminal repeat (LTR) is packaged into a highly specific chromatin structure comprised of an array of nucleosomes positioned with respect to important DNA sequence elements that regulate the transcriptional activity of the provirus. While several host cell factors have been shown to be important for chromatin remodeling and/or basal transcription, no specific mechanism that relieves the transcriptional repression imposed by nuc-1, a positioned nucleosome that impedes the start site of transcription, has been found. Since phorbol esters cause the rapid disruption of nuc-1 and markedly stimulate HIV-1 transcription, we looked for protein factors that associate with this region of the HIV-1 promoter in a phorbol-ester-dependent manner. We report here that ATF-3, JunB, and BRG-1 (the ATPase subunit of the 2-MDa human chromatin remodeling machine SWI/SNF) are recruited to the 3′ boundary of nuc-1 following phorbol myristate acetate stimulation in Jurkat T cells. Analysis of the recruitment of BRG-1 in nuclear extracts prepared from Jurkat T cells and reconstitution of an in vitro system with purified components demonstrate that ATF-3 is responsible for targeting human SWI/SNF (hSWI/SNF) to the HIV-1 promoter. Importantly, this recruitment of hSWI/SNF required HMGA1 proteins. Further support for this conclusion comes from immunoprecipitation experiments showing that BRG-1 and ATF-3 can exist together in the same complex. Although ATF-3 clearly plays a role in the specific targeting of BRG-1 to the HIV-1 promoter, the maintenance of a stable association between BRG-1 and chromatin appears to be dependent upon histone acetylation. By adding BRG-1 back into a BRG-1-deficient cell line (C33A cells), we demonstrate that trichostatin A strongly induces the 5′-LTR-driven reporter transcription in a manner that is dependent upon BRG-1 recruitment.


Sign in / Sign up

Export Citation Format

Share Document