scholarly journals Drosophila Transcription Factor Tramtrack69 Binds MEP1 To Recruit the Chromatin Remodeler NuRD

2010 ◽  
Vol 30 (21) ◽  
pp. 5234-5244 ◽  
Author(s):  
B. Ashok Reddy ◽  
Prashanth Kumar Bajpe ◽  
Andrew Bassett ◽  
Yuri M. Moshkin ◽  
Elena Kozhevnikova ◽  
...  

ABSTRACT ATP-dependent chromatin-remodeling complexes (remodelers) are essential regulators of chromatin structure and gene transcription. How remodelers can act in a gene-selective manner has remained enigmatic. A yeast two-hybrid screen for proteins binding the Drosophila transcription factor Tramtrack69 (TTK69) identified MEP1. Proteomic characterization revealed that MEP1 is a tightly associated subunit of the NuRD remodeler, harboring the Mi2 enzymatic core ATPase. In addition, we identified the fly homolog of human Deleted in oral cancer 1 (DOC1), also known as CDK2-associated protein 1 (CDK2AP1), as a bona fide NuRD subunit. Biochemical and genetic assays supported the functional association between MEP1, Mi2, and TTK69. Genomewide expression analysis established that TTK69, MEP1, and Mi2 cooperate closely to control transcription. The TTK69 transcriptome profile correlates poorly with remodelers other than NuRD, emphasizing the selectivity of remodeler action. On the genes examined, TTK69 is able to bind chromatin in the absence of NuRD, but targeting of NuRD is dependent on TTK69. Thus, there appears to be a hierarchical relationship in which transcription factor binding precedes remodeler recruitment.

2003 ◽  
Vol 23 (19) ◽  
pp. 6944-6957 ◽  
Author(s):  
Nickolai A. Barlev ◽  
Alexander V. Emelyanov ◽  
Paola Castagnino ◽  
Philip Zegerman ◽  
Andrew J. Bannister ◽  
...  

ABSTRACT In yeast, the transcriptional adaptor yeast Ada2 (yAda2) is a part of the multicomponent SAGA complex, which possesses histone acetyltransferase activity through action of the yGcn5 catalytic enzyme. yAda2, among several SAGA proteins, serves to recruit SAGA to genes via interactions with promoter-bound transcription factors. Here we report identification of a new human Ada2 homologue, hAda2β. Ada2β differs both biochemically and functionally from the previously characterized hAda2α, which is a stable component of the human PCAF (human Gcn5 homologue) acetylase complex. Ada2β, relative to Ada2α, interacted selectively, although not stably, with the Gcn5-containing histone acetylation complex TFTC/STAGA. In addition, Ada2β interacted with Baf57 (a component of the human Swi/Snf complex) in a yeast two-hybrid screen and associated with human Swi/Snf in vitro. In functional assays, hAda2β (but not Ada2α), working in concert with Gcn5 (but not PCAF) or Brg1 (the catalytic component of hSwi/Snf complex), increased transcription via the B-cell-specific transcription factor Pax5/BSAP. These findings support the view that Gcn5 and PCAF have distinct roles in vivo and suggest a new mechanism of coactivator function, in which a single adaptor protein (Ada2β) can coordinate targeting of both histone acetylation and chromatin remodeling activities.


1999 ◽  
Vol 19 (5) ◽  
pp. 3614-3623 ◽  
Author(s):  
Juliet M. Daniel ◽  
Albert B. Reynolds

ABSTRACT p120 ctn is an Armadillo repeat domain protein with structural similarity to the cell adhesion cofactors β-catenin and plakoglobin. All three proteins interact directly with the cytoplasmic domain of the transmembrane cell adhesion molecule E-cadherin; β-catenin and plakoglobin bind a carboxy-terminal region in a mutually exclusive manner, while p120 binds the juxtamembrane region. Unlike β-catenin and plakoglobin, p120 does not interact with α-catenin, the tumor suppressor adenomatous polyposis coli (APC), or the transcription factor Lef-1, suggesting that it has unique binding partners and plays a distinct role in the cadherin-catenin complex. Using p120 as bait, we conducted a yeast two-hybrid screen and identified a novel transcription factor which we named Kaiso. Kaiso’s deduced amino acid sequence revealed an amino-terminal BTB/POZ protein-protein interaction domain and three carboxy-terminal zinc fingers of the C2H2 DNA-binding type. Kaiso thus belongs to a rapidly growing family of POZ-ZF transcription factors that include the Drosophila developmental regulators Tramtrak and Bric à brac, and the human oncoproteins BCL-6 and PLZF, which are causally linked to non-Hodgkins’ lymphoma and acute promyelocytic leukemia, respectively. Monoclonal antibodies to Kaiso were generated and used to immunolocalize the protein and confirm the specificity of the p120-Kaiso interaction in mammalian cells. Kaiso specifically coprecipitated with a variety of p120-specific monoclonal antibodies but not with antibodies to α- or β-catenin, E-cadherin, or APC. Like other POZ-ZF proteins, Kaiso localized to the nucleus and was associated with specific nuclear dots. Yeast two-hybrid interaction assays mapped the binding domains to Arm repeats 1 to 7 of p120 and the carboxy-terminal 200 amino acids of Kaiso. In addition, Kaiso homodimerized via its POZ domain but it did not heterodimerize with BCL-6, which heterodimerizes with PLZF. The involvement of POZ-ZF proteins in development and cancer makes Kaiso an interesting candidate for a downstream effector of cadherin and/or p120 signaling.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4337-4337 ◽  
Author(s):  
Zlatana Pasalic ◽  
Belay Tizazu ◽  
Leticia Archangelo ◽  
Alexandre Krause ◽  
Greif Philipp ◽  
...  

Abstract The balanced chromosomal translocation t(10;11)(p13;q14) results in the CALM/AF10 fusion gene. This translocation is found in acute myeloid leukemia (AML), T-cell acute lymphoblastic leukaemia (T-ALL) and malignant lymphoma. The CALM/AF10 fusion gene has recently been shown to cause an aggressive biphenotypic leukemia in a murine bone marrow transplant model. The CALM (Clathrin Assembly Lymphoid Myeloid leukemia gene) gene product is a clathrin assembly protein which plays a role in clathrin mediated endocytosis and trans Golgi network trafficking. AF10 is a putative transcription factor most likely involved in processes related to chromatin organization and has polycomb group gene like properties. To learn more about the function of the CALM/AF10 fusion protein, we searched for protein interaction partners of CALM. In a yeast two hybrid screen the four and a half LIM domain protein FHL2 was identified as putative CALM interacting partner. The CALM FHL2 interaction was confirmed by co-transformation assay in yeast and by GST-pulldown experiments. The FHL2 interaction domain of CALM was mapped to amino acids 294 to 335 of CALM using the yeast two hybrid assay. In co-localization studies with transiently expressed fluorescent protein tagged CALM and FHL2, both proteins showed cytoplasmatic localization. Expression analysis (Affymetrix based) in different AML subtypes showed a significantly higher expression of FHL2 in AML with complex aberrant karyotypes compared to AML with normal karyotypes or balanced chromosomal translocations like the t(8;21), inv(16) or t(15;17). FHL2, which is also known as DRAL (downregulated in rhabdomyosarcoma LIM protein), is a TP53 responsive gene known to interact with numerous proteins in both the nucleus and the cytoplasm and can function as a transcriptional cofactor. Known FHL2 interactors include TP53, BRCA1, PLZF (promyelocytic leukemia zinc finger protein), the proto-oncogene SKI1 and beta-catenin. High expression of FHL2 in breast cancer has recently been shown to be associated with an adverse prognosis. CALM has been shown to shuttle between the nucleus and the cytoplasm because inhibition of CREM-mediated nuclear export by leptomycin B leads to the accumulation of CALM in the nucleus. Reporter gene assays using a GAL4-DNA binding domain CALM fusion protein and a GAL4 responsive luciferase reporter were able to demonstrate a transcriptional activation function of CALM. We are currently investigation the effect of FHL2 co-expression on this aspect of the CALM function. It is thus conceivable that FHL2 is playing an important role in CALM/AF10-mediated leukemogenesis by tethering the CALM/AF10 fusion protein to various nuclear transcription factor complexes.


2009 ◽  
Vol 284 (47) ◽  
pp. 32472-32482 ◽  
Author(s):  
Hiroyuki Oya ◽  
Atsushi Yokoyama ◽  
Ikuko Yamaoka ◽  
Ryoji Fujiki ◽  
Masayoshi Yonezawa ◽  
...  

2021 ◽  
Author(s):  
Yingqi Hong ◽  
Jianyi Zhang ◽  
Yanxi Lv ◽  
Na Yao ◽  
Xiuming Liu

Abstract BackgroundSalicylic acid (SA) plays an important role in regulating leaf senescence. However, the molecular mechanism of leaf senescence of safflower (Carthamus tinctorius) is still elusive. In this study we found that the bHLH transcription factor (TF) CtbHLH41 in Carthamus tinctorius significantly delayed leaf senescence and inhibited the expression of senescence-related genes.ResultsIn order to explore how CtbHLH41 promotes leaf senescence, we carried out yeast two-hybrid screening. In this study, by exploring the mechanism of CtbHLH41 regulating CtCP1, it was found that CtCP1 promoted the hydrolysis of CtbHLH41 protein, accelerated the transcriptional activities of salicylic acid-mediated senescence-related genes CtSAG12 and CtSAG29, chlorophyll degradation genes CtNYC1 and CtNYE1, and accelerated leaf senescence. We found a negative SA regulator CtANS1, which interacts with CtbHLH41 and regulates its stability, thereby inhibiting CtCP1-mediated leaf senescence.ConclusionsIn short, our results provide a new insight into the mechanism of CtbHLH41 actively regulating the senescence of safflower leaves induced by SA.


2013 ◽  
Vol 288 (42) ◽  
pp. 30508-30508
Author(s):  
Hiroyuki Oya ◽  
Atsushi Yokoyama ◽  
Ikuko Yamaoka ◽  
Ryoji Fujiki ◽  
Masayoshi Yonezawa ◽  
...  

2020 ◽  
Vol 71 (10) ◽  
pp. 3211-3226 ◽  
Author(s):  
Dan Wang ◽  
Changyue Jiang ◽  
Wandi Liu ◽  
Yuejin Wang

Abstract Resveratrol is notable not only for its functions in disease resistance in plants but also for its health benefits when it forms part of the human diet. Identification of new transcription factors helps to reveal the regulatory mechanisms of stilbene synthesis. Here, the WRKY53 transcription factor was isolated from the Chinese wild grape, Vitis quinquangularis. Vqwrky53 was expressed in a variety of tissues and responded to powdery mildew infection and to exogenous hormone application. VqWRKY53 was located in the nucleus and had transcriptional activation activity in yeast. A yeast two-hybrid assay and a bimolecular fluorescence complementation assay confirmed that VqWRKY53 interacted physically with VqMYB14 and VqMYB15, which have previously been reported to regulate stilbene synthesis. When Vqwrky53 was overexpressed in grape leaves, the expression of VqSTS32 and VqSTS41 and the content of stilbenes were increased. A yeast one-hybrid assay demonstrated that VqWRKY53 could bind directly to the promoters of STS genes. Overexpression of Vqwrky53 activated β-glucuronidase expression, driven by STS promoters, and co-expressing Vqwrky53 with VqMYB14 and VqMYB15 showed stronger regulatory functions. Heterologous overexpression of Vqwrky53 in Arabidopsis accelerated leaf senescence and disease resistance to PstDC3000.


2020 ◽  
Vol 21 (9) ◽  
pp. 3177 ◽  
Author(s):  
Tamás Kovács ◽  
Edina Szabó-Meleg ◽  
István M. Ábrahám

Gonadal hormone 17β-estradiol (E2) and its receptors are key regulators of gene transcription by binding to estrogen responsive elements in the genome. Besides the classical genomic action, E2 regulates gene transcription via the modification of epigenetic marks on DNA and histone proteins. Depending on the reaction partner, liganded estrogen receptor (ER) promotes DNA methylation at the promoter or enhancer regions. In addition, ERs are important regulators of passive and active DNA demethylation. Furthermore, ERs cooperating with different histone modifying enzymes and chromatin remodeling complexes alter gene transcription. In this review, we survey the basic mechanisms and interactions between estrogen receptors and DNA methylation, demethylation and histone modification processes as well as chromatin remodeling complexes. The particular relevance of these mechanisms to physiological processes in memory formation, embryonic development, spermatogenesis and aging as well as in pathophysiological changes in carcinogenesis is also discussed.


Sign in / Sign up

Export Citation Format

Share Document