scholarly journals Analysis of Transcriptional Activation at a Distance in Saccharomyces cerevisiae

2007 ◽  
Vol 27 (15) ◽  
pp. 5575-5586 ◽  
Author(s):  
Krista C. Dobi ◽  
Fred Winston

ABSTRACT Most fundamental aspects of transcription are conserved among eukaryotes. One striking difference between yeast Saccharomyces cerevisiae and metazoans, however, is the distance over which transcriptional activation occurs. In S. cerevisiae, upstream activation sequences (UASs) are generally located within a few hundred base pairs of a target gene, while in Drosophila and mammals, enhancers are often several kilobases away. To study the potential for long-distance activation in S. cerevisiae, we constructed and analyzed reporters in which the UAS-TATA distance varied. Our results show that UASs lose the ability to activate normal transcription as the UAS-TATA distance increases. Surprisingly, transcription does initiate, but proximally to the UAS, regardless of its location. To identify factors affecting long-distance activation, we screened for mutants allowing activation of a reporter when the UAS-TATA distance is 799 bp. These screens identified four loci, SIN4, SPT2, SPT10, and HTA1-HTB1, with sin4 mutations being the strongest. Our results strongly suggest that long-distance activation in S. cerevisiae is normally limited by Sin4 and other factors and that this constraint plays a role in ensuring UAS-core promoter specificity in the compact S. cerevisiae genome.

2021 ◽  
Vol 22 (4) ◽  
pp. 1854
Author(s):  
Tabinda Sidrat ◽  
Zia-Ur Rehman ◽  
Myeong-Don Joo ◽  
Kyeong-Lim Lee ◽  
Il-Keun Kong

The Wnt/β-catenin signaling pathway plays a crucial role in early embryonic development. Wnt/β-catenin signaling is a major regulator of cell proliferation and keeps embryonic stem cells (ESCs) in the pluripotent state. Dysregulation of Wnt signaling in the early developmental stages causes several hereditary diseases that lead to embryonic abnormalities. Several other signaling molecules are directly or indirectly activated in response to Wnt/β-catenin stimulation. The crosstalk of these signaling factors either synergizes or opposes the transcriptional activation of β-catenin/Tcf4-mediated target gene expression. Recently, the crosstalk between the peroxisome proliferator-activated receptor delta (PPARδ), which belongs to the steroid superfamily, and Wnt/β-catenin signaling has been reported to take place during several aspects of embryonic development. However, numerous questions need to be answered regarding the function and regulation of PPARδ in coordination with the Wnt/β-catenin pathway. Here, we have summarized the functional activation of the PPARδ in co-ordination with the Wnt/β-catenin pathway during the regulation of several aspects of embryonic development, stem cell regulation and maintenance, as well as during the progression of several metabolic disorders.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
László Mózsik ◽  
Mirthe Hoekzema ◽  
Niels A. W. de Kok ◽  
Roel A. L. Bovenberg ◽  
Yvonne Nygård ◽  
...  

AbstractFilamentous fungi are historically known to be a rich reservoir of bioactive compounds that are applied in a myriad of fields ranging from crop protection to medicine. The surge of genomic data available shows that fungi remain an excellent source for new pharmaceuticals. However, most of the responsible biosynthetic gene clusters are transcriptionally silent under laboratory growth conditions. Therefore, generic strategies for activation of these clusters are required. Here, we present a genome-editing-free, transcriptional regulation tool for filamentous fungi, based on the CRISPR activation (CRISPRa) methodology. Herein, a nuclease-defective mutant of Cas9 (dCas9) was fused to a highly active tripartite activator VP64-p65-Rta (VPR) to allow for sgRNA directed targeted gene regulation. dCas9-VPR was introduced, together with an easy to use sgRNA “plug-and-play” module, into a non-integrative AMA1-vector, which is compatible with several filamentous fungal species. To demonstrate its potential, this vector was used to transcriptionally activate a fluorescent reporter gene under the control of the penDE core promoter in Penicillium rubens. Subsequently, we activated the transcriptionally silent, native P. rubens macrophorin biosynthetic gene cluster by targeting dCas9-VPR to the promoter region of the transcription factor macR. This resulted in the production of antimicrobial macrophorins. This CRISPRa technology can be used for the rapid and convenient activation of silent fungal biosynthetic gene clusters, and thereby aid in the identification of novel compounds such as antimicrobials.


1993 ◽  
Vol 290 (1) ◽  
pp. 103-107 ◽  
Author(s):  
O Smékal ◽  
M Yasin ◽  
C A Fewson ◽  
G A Reid ◽  
S K Chapman

L-Lactate dehydrogenase (L-LDH) from Saccharomyces cerevisiae and L-mandelate dehydrogenase (L-MDH) from Rhodotorula graminis are both flavocytochromes b2. The kinetic properties of these enzymes have been compared using steady-state kinetic methods. The most striking difference between the two enzymes is found by comparing their substrate specificities. L-LDH and L-MDH have mutually exclusive primary substrates, i.e. the substrate for one enzyme is a potent competitive inhibitor for the other. Molecular-modelling studies on the known three-dimensional structure of S. cerevisiae L-LDH suggest that this enzyme is unable to catalyse the oxidation of L-mandelate because productive binding is impeded by steric interference, particularly between the side chain of Leu-230 and the phenyl ring of mandelate. Another major difference between L-LDH and L-MDH lies in the rate-determining step. For S. cerevisiae L-LDH, the major rate-determining step is proton abstraction at C-2 of lactate, as previously shown by the 2H kinetic-isotope effect. However, in R. graminis L-MDH the kinetic-isotope effect seen with DL-[2-2H]mandelate is only 1.1 +/- 0.1, clearly showing that proton abstraction at C-2 of mandelate is not rate-limiting. The fact that the rate-determining step is different indicates that the transition states in each of these enzymes must also be different.


1986 ◽  
Vol 6 (1) ◽  
pp. 90-96 ◽  
Author(s):  
T McClanahan ◽  
K McEntee

Two Saccharomyces cerevisiae genes isolated in a differential hybridization screening for DNA damage regulation (DDR genes) were also transcriptionally regulated by heat shock treatment. A 0.45-kilobase transcript homologous to the DDRA2 gene and a 1.25-kilobase transcript homologous to the DDR48 gene accumulated after exposure of cells to 4-nitroquinoline-1-oxide (NQO; 1 to 1.5 microgram/ml) or brief heat shock (20 min at 37 degrees C). The DDRA2 transcript, which was undetectable in untreated cells, was induced to high levels by these treatments, and the DDR48 transcript increased more than 10-fold as demonstrated by Northern hybridization analysis. Two findings argue that dual regulation of stress-responsive genes is not common in S. cerevisiae. First, two members of the heat shock-inducible hsp70 family of S. cerevisiae, YG100 and YG102, were not induced by exposure to NQO. Second, at least one other DNA-damage-inducible gene, DIN1, was not regulated by heat shock treatment. We examined the structure of the induced RNA homologous to DDRA2 after heat shock and NQO treatments by S1 nuclease protection experiments. Our results demonstrated that the DDRA2 transcript initiates equally frequently at two sites separated by 5 base pairs. Both transcriptional start sites were utilized when cells were exposed to either NQO or heat shock treatment. These results indicate that DDRA2 and DDR48 are members of a unique dually regulated stress-responsive family of genes in S. cerevisiae.


1986 ◽  
Vol 6 (7) ◽  
pp. 2429-2435 ◽  
Author(s):  
D M Donovan ◽  
N J Pearson

The relative rates of synthesis of Saccharomyces cerevisiae ribosomal proteins increase coordinately during a nutritional upshift. We constructed a gene fusion which contained 528 base pairs of sequence upstream from and including the TATA box of ribosomal protein gene rp55-1 (S16A-1) fused to a CYC1-lacZ fusion. This fusion was integrated in single copy at the rp55-1 locus in the yeast genome. During a nutritional upshift, in which glucose was added to cells growing in an ethanol-based medium, we found that the increase in the relative rate of synthesis of the beta-galactosidase protein product followed the same kinetics as the change in relative rates of synthesis of several ribosomal proteins measured in the same experiment. This demonstrates that the nontranscribed sequences upstream from the rp55-1 gene, which are present in the fusion, are sufficient to mediate the change in rates of synthesis characteristic of ribosomal proteins under these conditions. The results also suggest that a change in transcription rates is mainly responsible for the increase in relative rates of synthesis of ribosomal proteins during a nutritional upshift in S. cerevisiae.


1989 ◽  
Vol 9 (9) ◽  
pp. 3869-3877
Author(s):  
P A Bricmont ◽  
T G Cooper

The allantoin-degradative pathway of Saccharomyces cerevisiae consists of several genes whose expression is highly induced by the presence of allophanic acid. Induced expression requires a functional DAL81 gene product. Analysis of these genes has demonstrated the presence of three cis-acting elements in the upstream regions: (i) an upstream activation sequence (UAS) required for transcriptional activation in an inducer-independent fashion, (ii) an upstream repression sequence (URS) that mediates inhibition of this transcriptional activation, and (iii) an upstream induction sequence (UIS) needed for a response to inducer. The UIS element mediates inhibition of URS-mediated function when inducer is present. We cloned and characterized the DAL81 gene and identified the element with which it was associated. The gene was found to encode a rare 3.2-kilobase-pair mRNA. The amount of DAL81-specific RNA responded neither to induction nor to nitrogen catabolite repression. Deletion of the DAL81 gene resulted in loss of induction but did not significantly affect basal level expression of the DAL7 and DUR1,2 genes or the UAS and URS functions present in plasmid constructions. These data suggest that (i) transcriptional activation of the DAL genes and their responses to inducer are mediated by different factors and cis-acting sequences and (ii) the UIS functions only when a wild-type DAL81 gene product is available.


1989 ◽  
Vol 9 (2) ◽  
pp. 442-451
Author(s):  
M Nishizawa ◽  
R Araki ◽  
Y Teranishi

To clarify carbon source-dependent control of the glycolytic pathway in the yeast Saccharomyces cerevisiae, we have initiated a study of transcriptional regulation of the pyruvate kinase gene (PYK). By deletion analysis of the 5'-noncoding region of the PYK gene, we have identified an upstream activating sequence (UASPYK1) located between 634 and 653 nucleotides upstream of the initiating ATG codon. The promoter activity of the PYK 5'-noncoding region was abolished when the sequence containing the UASPYK1 was deleted from the region. Synthetic UASPYK1 (26mer), in either orientation, was able to restore the transcriptional activity of UAS-depleted mutants when placed upstream of the TATA sequence located at -199 (ATG as +1). While the UASPYK1 was required for basal to intermediate levels of transcriptional activation, a sequence between -714 and -811 was found to be necessary for full activation. On the other hand, a sequence between -344 and -468 was found to be responsible for transcriptional repression of the PYK gene when yeast cells were grown on nonfermentable carbon sources. This upstream repressible sequence also repressed transcription, although to a lesser extent, when glucose was present in the medium. The possible mechanism for carbon source-dependent regulation of PYK expression through these cis-acting regulatory elements is discussed.


1985 ◽  
Vol 5 (8) ◽  
pp. 1901-1909
Author(s):  
M A Oettinger ◽  
K Struhl

Transcription of the Saccharomyces cerevisiae his3 gene requires an upstream promoter element and a TATA element. A strain containing his3-delta 13, an allele which deletes the upstream promoter element but contains the TATA box and intact structural gene, fails to express the gene and consequently is unable to grow in medium lacking histidine. In this paper we characterize His+ revertants of his3-delta 13 which are due to unlinked suppressor mutations. Recessive suppressors in three different ope genes allow his3-delta 13 to be expressed at wild-type levels. In all cases, the suppression is due to increased his3 transcription. However, unlike the wild-type his3 gene, whose transcripts are initiated about equally from two different sites (+1 and +12), transcription due to the ope mutations is initiated only from the +12 site, ope-mediated transcription is regulated in a novel manner; it is observed in minimal medium, but not in rich broth. Although ope mutations restore wild-type levels of transcription, his3 chromatin structure, as assayed by micrococcal nuclease sensitivity of the TATA box, resembles that found in the his3-delta 13 parent rather than in the wild-type strain. This provides further evidence that TATA box sensitivity is not correlated with transcriptional activation. ope mutations are pleiotropic in that cells have a crunchy colony morphology and lyse at 37 degrees C in conditions of normal osmolarity. ope mutations are allele specific because they fail to suppress five other his3 promoter mutations. We discuss implications concerning upstream promoter elements and propose some models for ope suppression.


1985 ◽  
Vol 5 (1) ◽  
pp. 17-26
Author(s):  
L Naumovski ◽  
G Chu ◽  
P Berg ◽  
E C Friedberg

We determined the complete nucleotide sequence of the RAD3 gene of Saccharomyces cerevisiae. The coding region of the gene contained 2,334 base pairs that could encode a protein with a calculated molecular weight of 89,796. Analysis of RAD3 mRNA by Northern blots and by S1 nuclease mapping indicated that the transcript was approximately 2.5 kilobases and did not contain intervening sequences. Fusions between the RAD3 gene and the lac'Z gene of Escherichia coli were constructed and used to demonstrate that the RAD3 gene was not inducible by DNA damage caused by UV radiation or 4-nitroquinoline-1-oxide. Two UV-sensitive chromosomal mutant alleles of RAD3, rad3-1 and rad3-2, were rescued by gap repair of a centromeric plasmid, and their sequences were determined. The rad3-1 mutation changed a glutamic acid to lysine, and the rad3-2 mutation changed a glycine to arginine. Previous studies have shown that disruption of the RAD3 gene results in loss of an essential function and is associated with inviability of haploid cells. In the present experiments, plasmids carrying the rad3-1 and rad3-2 mutations were introduced into haploid cells containing a disrupted RAD3 gene. These plasmids expressed the essential function of RAD3 but not its DNA repair function. A 74-base-pair deletion at the 3' end of the RAD3 coding region or a fusion of this deletion to the E. coli lac'Z gene did not affect either function of RAD3.


Sign in / Sign up

Export Citation Format

Share Document