scholarly journals The SAM Domains of Anks Family Proteins Are Critically Involved in Modulating the Degradation of EphA Receptors

2010 ◽  
Vol 30 (7) ◽  
pp. 1582-1592 ◽  
Author(s):  
Jieun Kim ◽  
Haeryung Lee ◽  
Yujin Kim ◽  
Sooyeon Yoo ◽  
Eunjeong Park ◽  
...  

ABSTRACT We recently reported that the phosphotyrosine-binding (PTB) domain of Anks family proteins binds to EphA8, thereby positively regulating EphA8-mediated signaling pathways. In the current study, we identified a potential role for the SAM domains of Anks family proteins in EphA signaling. We found that SAM domains of Anks family proteins directly bind to ubiquitin, suggesting that Anks proteins regulate the degradation of ubiquitinated EphA receptors. Consistent with the role of Cbl ubiquitin ligases in the degradation of Eph receptors, our results revealed that the ubiquitin ligase c-Cbl induced the ubiquitination and degradation of EphA8 upon ligand binding. Ubiquitinated EphA8 also bound to the SAM domains of Odin, a member of the Anks family proteins. More importantly, the overexpression of wild-type Odin protected EphA8 and EphA2 from undergoing degradation following ligand stimulation and promoted EphA-mediated inhibition of cell migration. In contrast, a SAM domain deletion mutant of Odin strongly impaired the function of endogenous Odin, suggesting that the mutant functions in a dominant-negative manner. An analysis of Odin-deficient primary embryonic fibroblasts indicated that Odin levels play a critical role in regulating the stability of EphA2 in response to ligand stimulation. Taken together, our studies suggest that the SAM domains of Anks family proteins play a pivotal role in enhancing the stability of EphA receptors by modulating the ubiquitination process.

Endocrinology ◽  
2012 ◽  
Vol 153 (1) ◽  
pp. 241-253 ◽  
Author(s):  
S. Kalista ◽  
O. Schakman ◽  
H. Gilson ◽  
P. Lause ◽  
B. Demeulder ◽  
...  

Myostatin inhibition by follistatin (FS) offers a new approach for muscle mass enhancement. The aim of the present study was to characterize the mediators responsible for the FS hypertrophic action on skeletal muscle in male mice. Because IGF-I and IGF-II, two crucial skeletal muscle growth factors, are induced by myostatin inhibition, we assessed their role in FS action. First, we tested whether type 1 IGF receptor (IGF-IR) is required for FS-induced hypertrophy. By using mice expressing a dominant-negative IGF-IR in skeletal muscle, we showed that IGF-IR inhibition blunted by 63% fiber hypertrophy caused by FS. Second, we showed that FS caused the same degree of fiber hypertrophy in wild-type and IGF-II knockout mice. We then tested the role of the signaling molecules stimulated by IGF-IR, in particular the Akt/mammalian target of rapamycin (mTOR)/70-kDa ribosomal protein S6 kinase (S6K) pathway. We investigated whether Akt phosphorylation is required for the FS action. By cotransfecting a dominant-negative form of Akt together with FS, we showed that Akt inhibition reduced by 65% fiber hypertrophy caused by FS. Second, we evaluated the role of mTOR in FS action. Fiber hypertrophy induced by FS was reduced by 36% in rapamycin-treated mice. Finally, because the activity of S6K is increased by FS, we tested its role in FS action. FS caused the same degree of fiber hypertrophy in wild-type and S6K1/2 knockout mice. In conclusion, the IGF-IR/Akt/mTOR pathway plays a critical role in FS-induced muscle hypertrophy. In contrast, induction of IGF-II expression and S6K activity by FS are not required for the hypertrophic action of FS.


2008 ◽  
Vol 295 (1) ◽  
pp. F290-F294 ◽  
Author(s):  
Hua Jenny Lu ◽  
Toshiyuki Matsuzaki ◽  
Richard Bouley ◽  
Udo Hasler ◽  
Quan-Hong Qin ◽  
...  

Phosphorylation of serine 256 (S256) plays a critical role in vasopressin (VP)-mediated membrane accumulation of aquaporin-2 (AQP2). Recently, phosphorylation of serine 261 was also reported, raising the possibility that it has a role in AQP2 trafficking. We addressed this issue using transfected LLC-PK1 cells that express point mutations of AQP2 S261 and S256, mimicking the phosphorylated (S to D) or dephosphorylated (S to A) states of these residues. Both AQP2 (S261A) and AQP2 (S261D) were located in the perinuclear cytoplasm without stimulation but, like wild-type AQP2, they both accumulated on the plasma membrane after 20-min exposure to VP or forskolin. Following membrane accumulation, S261A, S261D, and wild-type AQP2 reinternalization was complete over a similar time frame, between 30 and 60 min after VP washout. Using various combinations of point mutations, we showed that the phosphorylation state of S256 is dominant with respect to AQP2 behavior; AQP2 membrane accumulation and internalization were not detectably affected by the phosphorylation state of S261. Finally, blocking AQP2 endocytosis by methyl-β-cyclodextrin caused membrane accumulation of AQP2 in cells expressing either a single S-A mutation or double mutations of S256 and S261, although as previously reported, the S256D mutation was always present at the cell surface. This suggests that constitutive recycling of AQP2 was not modified by the phosphorylation state of S261. Together, our data indicate that the phosphorylation state of AQP2 at S261 does not detectably affect regulated or constitutive trafficking of AQP2. The potential role of S261 phosphorylation/dephosphorylation in vasopressin action remains to be determined.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 767
Author(s):  
Kamar Hamade ◽  
Ophélie Fliniaux ◽  
Jean-Xavier Fontaine ◽  
Roland Molinié ◽  
Elvis Otogo Nnang ◽  
...  

Lignans, phenolic plant secondary metabolites, are derived from the phenylpropanoid biosynthetic pathway. Although, being investigated for their health benefits in terms of antioxidant, antitumor, anti-inflammatory and antiviral properties, the role of these molecules in plants remains incompletely elucidated; a potential role in stress response mechanisms has been, however, proposed. In this study, a non-targeted metabolomic analysis of the roots, stems, and leaves of wild-type and PLR1-RNAi transgenic flax, devoid of (+) secoisolariciresinol diglucoside ((+) SDG)—the main flaxseed lignan, was performed using 1H-NMR and LC-MS, in order to obtain further insight into the involvement of lignan in the response of plant to osmotic stress. Results showed that wild-type and lignan-deficient flax plants have different metabolic responses after being exposed to osmotic stress conditions, but they both showed the capacity to induce an adaptive response to osmotic stress. These findings suggest the indirect involvement of lignans in osmotic stress response.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Lin Song ◽  
Lijuan Cao ◽  
Rui Liu ◽  
Hui Ma ◽  
Yanan Li ◽  
...  

AbstractGlucocorticoids (GC) are widely used clinically, despite the presence of significant side effects, including glucocorticoid-induced osteoporosis (GIOP). While GC are believed to act directly on osteoblasts and osteoclasts to promote osteoporosis, the detailed underlying molecular mechanism of GC-induced osteoporosis is still not fully elucidated. Here, we show that lymphocytes play a pivotal role in regulating GC-induced osteoporosis. We show that GIOP could not be induced in SCID mice that lack T cells, but it could be re-established by adoptive transfer of splenic T cells from wild-type mice. As expected, T cells in the periphery are greatly reduced by GC; instead, they accumulate in the bone marrow where they are protected from GC-induced apoptosis. These bone marrow T cells in GC-treated mice express high steady-state levels of NF-κB receptor activator ligand (RANKL), which promotes the formation and maturation of osteoclasts and induces osteoporosis. Taken together, these findings reveal a critical role for T cells in GIOP.


2006 ◽  
Vol 26 (12) ◽  
pp. 4553-4563 ◽  
Author(s):  
Seon-Yong Yeom ◽  
Geun Hyang Kim ◽  
Chan Hee Kim ◽  
Heun Don Jung ◽  
So-Yeon Kim ◽  
...  

ABSTRACT Activating signal cointegrator 2 (ASC-2) is a transcriptional coactivator of many nuclear receptors (NRs) and other transcription factors and contains two NR-interacting LXXLL motifs (NR boxes). In the pancreas, ASC-2 is expressed only in the endocrine cells of the islets of Langerhans, but not in the exocrine cells. Thus, we examined the potential role of ASC-2 in insulin secretion from pancreatic β-cells. Overexpressed ASC-2 increased glucose-elicited insulin secretion, whereas insulin secretion was decreased in islets from ASC-2+/− mice. DN1 and DN2 are two dominant-negative fragments of ASC-2 that contain NR boxes 1 and 2, respectively, and block the interactions of cognate NRs with the endogenous ASC-2. Primary rat islets ectopically expressing DN1 or DN2 exhibited decreased insulin secretion. Furthermore, relative to the wild type, ASC-2+/− mice showed reduced islet mass and number, which correlated with increased apoptosis and decreased proliferation of ASC-2+/− islets. These results suggest that ASC-2 regulates insulin secretion and β-cell survival and that the regulatory role of ASC-2 in insulin secretion appears to involve, at least in part, its interaction with NRs via its two NR boxes.


2014 ◽  
Vol 307 (3) ◽  
pp. H337-H345 ◽  
Author(s):  
Lara Gotha ◽  
Sang Yup Lim ◽  
Azriel B. Osherov ◽  
Rafael Wolff ◽  
Beiping Qiang ◽  
...  

Perlecan is a proteoglycan composed of a 470-kDa core protein linked to three heparan sulfate (HS) glycosaminoglycan chains. The intact proteoglycan inhibits the smooth muscle cell (SMC) response to vascular injury. Hspg2Δ3/Δ3 (MΔ3/Δ3) mice produce a mutant perlecan lacking the HS side chains. The objective of this study was to determine differences between these two types of perlecan in modifying SMC activities to the arterial injury response, in order to define the specific role of the HS side chains. In vitro proliferative and migratory activities were compared in SMC isolated from MΔ3/Δ3 and wild-type mice. Proliferation of MΔ3/Δ3 SMC was 1.5× greater than in wild type ( P < 0.001), increased by addition of growth factors, and showed a 42% greater migratory response than wild-type cells to PDGF-BB ( P < 0.001). In MΔ3/Δ3 SMC adhesion to fibronectin, and collagen types I and IV was significantly greater than wild type. Addition of DRL-12582, an inducer of perlecan expression, decreased proliferation and migratory response to PDGF-BB stimulation in wild-type SMC compared with MΔ3/Δ3. In an in vivo carotid artery wire injury model, the medial thickness, medial area/lumen ratio, and macrophage infiltration were significantly increased in the MΔ3/Δ3 mice, indicating a prominent role of the HS side chain in limiting vascular injury response. Mutant perlecan that lacks HS side chains had a marked reduction in the inhibition of in vitro SMC function and the in vivo arterial response to injury, indicating the critical role of HS side chains in perlecan function in the vessel wall.


2008 ◽  
Vol 283 (33) ◽  
pp. 22430-22442 ◽  
Author(s):  
Matthew D. Bruss ◽  
Wito Richter ◽  
Kathleen Horner ◽  
S.-L. Catherine Jin ◽  
Marco Conti

2004 ◽  
Vol 287 (4) ◽  
pp. E739-E743 ◽  
Author(s):  
Burton F. Holmes ◽  
David B. Lang ◽  
Morris J. Birnbaum ◽  
James Mu ◽  
G. Lynis Dohm

An acute bout of exercise increases muscle GLUT4 mRNA in mice, and denervation decreases GLUT4 mRNA. AMP-activated protein kinase (AMPK) activity in skeletal muscle is also increased by exercise, and GLUT4 mRNA is increased in mouse skeletal muscle after treatment with AMPK activator 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside(AICAR). These findings suggest that AMPK activation might be responsible for the increase in GLUT4 mRNA expression in response to exercise. To investigate the role of AMPK in GLUT4 regulation in response to exercise and denervation, transgenic mice with a mutated AMPK α-subunit (dominant negative; AMPK-DN) were studied. GLUT4 did not increase in AMPK-DN mice that were treated with AICAR, demonstrating that muscle AMPK is inactive. Exercise (two 3-h bouts of treadmill running separated by 1 h of rest) increased GLUT4 mRNA in both wild-type and AMPK-DN mice. Likewise, denervation decreased GLUT4 mRNA in both wild-type and AMPK-DN mice. GLUT4 mRNA was also increased by AICAR treatment in both the innervated and denervated muscles. These data demonstrate that AMPK is not required for the response of GLUT4 mRNA to exercise and denervation.


2003 ◽  
Vol 197 (10) ◽  
pp. 1297-1302 ◽  
Author(s):  
Martin Hegen ◽  
Linhong Sun ◽  
Naonori Uozumi ◽  
Kazuhiko Kume ◽  
Mary E. Goad ◽  
...  

Pathogenic mechanisms relevant to rheumatoid arthritis occur in the mouse model of collagen-induced arthritis (CIA). Cytosolic phospholipase A2α (cPLA2α) releases arachidonic acid from cell membranes to initiate the production of prostaglandins and leukotrienes. These inflammatory mediators have been implicated in the development of CIA. To test the hypothesis that cPLA2α plays a key role in the development of CIA, we backcrossed cPLA2α-deficient mice on the DBA/1LacJ background that is susceptible to CIA. The disease severity scores and the incidence of disease were markedly reduced in cPLA2α-deficient mice compared with wild-type littermates. At completion of the study, &gt;90% of the wild-type mice had developed disease whereas none of the cPLA2α-deficient mice had more than one digit inflamed. Furthermore, visual disease scores correlated with severity of disease determined histologically. Pannus formation, articular fibrillation, and ankylosis were all dramatically reduced in the cPLA2α-deficient mice. Although the disease scores differed significantly between cPLA2α mutant and wild-type mice, anti-collagen antibody levels were similar in the wild-type mice and mutant littermates. These data demonstrate the critical role of cPLA2α in the pathogenesis of CIA.


2021 ◽  
Author(s):  
Tomoko Tanaka ◽  
Shinobu Hirai ◽  
Hiroyuki Manabe ◽  
Kentaro Endo ◽  
Hiroko Shimbo ◽  
...  

Aging involves a decline in physiology which is a natural event in all living organisms. An accumulation of DNA damage contributes to the progression of aging. DNA is continually damaged by exogenous sources and endogenous sources. If the DNA repair pathway operates normally, DNA damage is not life threatening. However, impairments of the DNA repair pathway may result in an accumulation of DNA damage, which has a harmful effect on health and causes an onset of pathology. RP58, a zinc-finger transcriptional repressor, plays a critical role in cerebral cortex formation. Recently, it has been reported that the expression level of RP58 decreases in the aged human cortex. Furthermore, the role of RP58 in DNA damage is inferred by the involvement of DNMT3, which acts as a co-repressor for RP58, in DNA damage. Therefore, RP58 may play a crucial role in the DNA damage associated with aging. In the present study, we investigated the role of RP58 in aging. We used RP58 hetero-knockout and wild-type mice in adolescence, adulthood, or old age. We performed immunohistochemistry to determine whether microglia and DNA damage markers responded to the decline in RP58 levels. Furthermore, we performed an object location test to measure cognitive function, which decline with age. We found that the wild-type mice showed an increase in single-stranded DNA and gamma-H2AX foci. These results indicate an increase in DNA damage or dysfunction of DNA repair mechanisms in the hippocampus as age-related changes. Furthermore, we found that, with advancing age, both the wild-type and hetero-knockout mice showed an impairment of spatial memory for the object and increase in reactive microglia in the hippocampus. However, the RP58 hetero-knockout mice showed these symptoms earlier than the wild-type mice did. These results suggest that a decline in RP58 level may lead to the progression of aging.


Sign in / Sign up

Export Citation Format

Share Document